

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern
approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and contain numerous
examples and problems. Many include fully worked solutions.

Also in this series

Iain D. Craig

Object-Oriented Programming Languages: Interpretation

978-1-84628-773-2

Max Bramer

Principles of Data Mining

978-1-84628-765-7

Hanne Riis Nielson and Flemming Nielson

Semantics with Applications: An Appetizer

978-1-84628-691-9

Michael Kifer and Scott A. Smolka

Introduction
to Operating
System Design
and Implementation
The OSP 2 Approach

Michael Kifer, PhD
State University of New York
at Stony Brook, NY, USA

Scott A. Smolka, PhD
State University of New York
at Stony Brook, NY, USA

Series editor
Ian Mackie
École Polytechnique, France and King’s College London, UK

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK
Dexter Kozen, Cornell University, USA
Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK
David Zhang, The Hong Kong Polytechnic University, Hong Kong

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007926598

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN 978-1-84628-842-5 e-ISBN 978-1-84628-843-2

Printed on acid-free paper

c© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Contents

Preface . ix

1. Organization of OSP 2 . 1
1.1 Chapter Objective . 1
1.2 Operating System Basics . 1
1.3 OSP 2 Organization . 6
1.4 Simulated Hardware in OSP 2 . 8
1.5 Utilities . 11
1.6 OSP 2 Events . 16
1.7 OSP 2 Daemons . 18
1.8 Compiling and Running Projects . 19
1.9 General Rules of Engagement . 24

1.9.1 A Day in the Life of an OSP 2 Thread 25
1.9.2 Convention for Calling Student Methods 26
1.9.3 Static vs. Instance Methods . 28
1.9.4 Obfuscation of Method and Class Names 28
1.9.5 Possible Hanging After Errors . 29
1.9.6 Possible Exceptions After the End of Execution 29
1.9.7 General Advice: How to Figure it Out 29

1.10 System Log, Snapshots, and Statistics . 30
1.11 Debugging . 31
1.12 Project Submission . 35

2. Putting it All Together: An Example Session with OSP 2 . . 39
2.1 Chapter Objective . 39
2.2 Overview of Thread Management in OSP 2 39

vi Introduction to Operating System Design and Implementation: The OSP 2 Approach

2.3 The Student Method do resume() . 40
2.4 Step 1: Compiling and Running the Project 41
2.5 Step 2: Examining the OSP.log File . 42
2.6 Step 3: Introducing an Error into do resume() 43

3. Tasks: Management of Tasks (a.k.a. Processes) 45
3.1 Chapter Objective . 45
3.2 Conceptual Background . 45
3.3 Class TaskCB . 46
3.4 Methods Exported by the Tasks Package 53

4. Threads: Management and Scheduling of Threads 57
4.1 Chapter Objective . 57
4.2 Overview of Threads . 57
4.3 The Class ThreadCB . 61
4.4 The Class TimerInterruptHandler . 71
4.5 Methods Exported by the Threads Package 72

5. Memory: Virtual Memory Management . 75
5.1 Chapter Objective . 75
5.2 Overview of Memory Management . 75
5.3 Class FrameTableEntry . 83
5.4 Class PageTableEntry . 86
5.5 Class PageTable . 90
5.6 Class MMU . 91
5.7 Class PageFaultHandler . 95
5.8 Methods Exported by Package Memory . 100

6. Devices: Scheduling of Disk Requests . 103
6.1 Chapter Objective . 103
6.2 Overview of I/O Handling . 103
6.3 Class IORB . 106
6.4 Class Device . 109
6.5 Class DiskInterruptHandler . 114
6.6 Methods Exported by Package Devices . 117

7. FileSys: The File System . 119
7.1 Chapter Objective . 119
7.2 File System Design Objectives . 119
7.3 Overview of the OSP 2 File System . 121
7.4 Class MountTable . 123
7.5 Class INode . 127

Contents vii

7.6 Class DirectoryEntry . 129
7.7 Class OpenFile . 131
7.8 Class FileSys . 136
7.9 Methods Exported by the FileSys Package 141

8. Ports: Interprocess Communication . 143
8.1 Chapter Objective . 143
8.2 Interprocess Communication in OSP 2 . 143
8.3 The Message Class . 144
8.4 The PortCB Class . 146
8.5 Methods Exported by Package Ports . 151

9. Resources: Resource Management . 153
9.1 Chapter Objective . 153
9.2 Overview of Resource Management . 153
9.3 Overview of Resource Management in OSP 2 155
9.4 Class ResourceTable . 156
9.5 Class RRB . 157
9.6 Class ResourceCB . 160
9.7 Methods Exported by the Resources Package 166

Index . 167

Preface

OSP 2 is both an implementation of a modern operating system, and a flexible
environment for generating implementation projects appropriate for an intro-
ductory course in operating system design. It is intended to complement the
use of an introductory textbook on operating systems and contains enough
projects for up to three semesters. These projects expose students to many
essential features of operating systems, while at the same time isolating them
from low-level machine-dependent concerns. Thus, even in one semester, stu-
dents can learn about page replacement strategies in virtual memory manage-
ment, cpu scheduling strategies, disk seek time optimization, and other issues
in operating system design.

OSP 2 is written in the Java programming language and students program
their OSP 2 projects in Java as well. Therefore as prerequisites for using OSP 2 ,
students are expected to have solid Java programming skills; be well-versed in
object-oriented programming concepts such as classes, objects, methods, and
inheritance; to have taken an undergraduate Computer Science course in data
structures; and to have working knowledge of a Java programming environment,
i.e., javac, java, text editing, etc. OSP 2 is the successor to the original OSP
software, which was released in 1990 and programmed in C.

OSP 2 consists of a number of modules, each of which performs a basic
operating systems service, such as device scheduling, cpu scheduling, inter-
rupt handling, file management, memory management, process management,
resource management, and interprocess communication. Projects can be orga-
nized in any desired order so as to progress in a manner consistent with the
lecture material. The OSP 2 distribution comes with a reference Java imple-
mentation of each module, which is provided to the course instructor.

Each OSP 2 project has a well-defined API (application programming in-
terface), that the student must implement in order to successfully complete

x Introduction to Operating System Design and Implementation: The OSP 2 Approach

the project. Thus, among other things, OSP 2 teaches students to work with
“open” environments where programming must be conducted to satisfy con-
crete sets of project requirements and where APIs must be used to interface to
other subsystems.

Each OSP 2 project consists of a “partial load module” of standard OSP 2

modules to which the students link their implementation of the assigned mod-
ules. The result is a new and complete operating system, partially implemented
by the student. Additionally, each project includes one or more “*.java” files,
which contain class and method headings for each of the assigned modules.
These files serve as templates in which the student is to fill in the code for the
required methods. This ensures a consistent interface to OSP 2 and eliminates
much of the routine typing, both by the instructor and by the student.

The heart of OSP 2 is a simulator that gives the illusion of a computer
system with a dynamically evolving collection of user processes to be multipro-
grammed. All the other modules of OSP 2 are built to respond appropriately
to the simulator-generated events that drive the operating system. The simu-
lator “understands” its interaction with the other modules in that it can often
detect an erroneous response by a module to a simulated event. In such cases,
the simulator will gracefully terminate execution of the program by delivering
a meaningful error message to the user, indicating where the error might be
found. This facility serves both as a debugging tool for the student and as
teaching tool for the instructor, as it ensures that student programs acceptable
to the simulator are virtually bug-free. (Verification by the simulator does not,
of course, replace the need to examine student programs to ensure that they are
properly designed and acceptable from a software engineering point of view.)

The difficulty of the job streams generated by the simulator can be dy-
namically adjusted by manipulating the simulation parameters . This yields a
simple and effective way of testing the quality of student programs. There are
also facilities that allow students to debug their programs, including a detailed
system log of events and various hooks into the system that allow student-
provided methods to be called when an OSP 2 warning or error is detected.
Also, a graphical user interface (GUI) is available that provides a convenient
way for students and instructors to enter simulation parameters and to view
various statistics concerning the execution of OSP 2 .

The underlying model in OSP 2 is not a clone of any specific operating
system. Rather it is an abstraction of the common features of several systems
(although a bias towards Unix and the Mach operating systems can be seen,
at times). Moreover, the OSP 2 modules were designed to hide a number of
low-level concerns, yet still encompass the most salient aspects of their real-life
counterparts in modern systems. Their implementation is well-suited as the
project component of an introductory course in operating systems.

Preface xi

How to Use this Book

This book is primarily a manual for students on how to program the OSP 2

projects. Chapter 1 describes the overall organization of OSP 2 . Chapter 2 takes
the student through an example session with OSP 2 . Each subsequent chap-
ter constitutes a detailed description of one of the OSP 2 projects, beginning
with a statement of the goals of the project, followed by a short introduction
to the basic OS concepts relevant to that chapter’s subject matter. The latter
is intended to help bridge the gap between the OSP 2 manual and the course
textbook. Before even the first assignment is handed out, students should read
this Preface and Chapters 1 and 2. When a specific project is assigned (e.g. the
thread-management project, project Threads) the appropriate chapter (Chap-
ter 4 in the case of Threads) should be read carefully. Each project chapter
provides a complete description of the API for the OSP 2 module the students
have been asked to implement, including a clear account of the functionality
of each method in the project. Also provided is a list of methods from other
project modules that may be needed to implement the project assignment.
The student should refer to the relevant chapters for a more detailed account
of these methods.

Goals of this Book

Besides serving as the student project manual for OSP 2 , the goals of this book,
and more broadly the OSP 2 environment, are the following:

� To teach students fundamental operating system concepts in the following
areas:

– process and thread management

– memory management

– file systems

– interprocess communication

– I/O device management

– resource management

� To give students the opportunity to practice these skills in a realistic oper-
ating systems programming environment.

� To provide students with challenging individual and group programming
assignments which promote “active learning” to reinforce and amplify the

xii Introduction to Operating SystemDesign and Implementation:The OSP 2 Approach

lecture material.

� To provide programming assignments that involve significant modifications
to an actual, working operating system, thereby familiarizing students with
the internals of OS implementation.

� To provide instructors with a flexible OS programming project that can easily
accommodate their lecture schedule.

Acknowledgments

We would like to gratefully acknowledge the past members of the OSP 2 de-
velopment team, including Sanford Barr, who produced the original design
and implementation of the event engine; William Ries, Adam Sah and Tomek
Retelewski, who, along with Sanford, designed and implemented an earlier ver-
sion of OSP 2 that was written in C++; Fang Yang, who was responsible for
porting the event engine and several other modules from the C++ version to
Java; Kevin McDonnell and Peter Litskevitch, for designing, implementing and
documenting most of the modules in the current version; Jingjing Wei, for im-
plementing the latest configurable version of the GUI; Eric Nuzzi, who devised
a systematic testing protocol for the OSP 2 code; Martin Bruggink, for imple-
menting the Ports module; Xiaohua Wu, for implementing the Resources

module; and David McManamon, for implementing the software that allows
students to submit their solutions to OSP 2 assignments electronically.

Some parts of OSP 2 rely on third-party software. In particular, we thank
Retrologic for developing their excellent Java obfuscator and releasing it under
the Lesser Gnu Public License (LGPL).

Finally, we would like to thank Wayne Wheeler and Catherine Brett of
Springer London Ltd for bringing their editorial expertise to bear on this
project.

1
Organization of OSP 2

1.1 Chapter Objective

The objective of this chapter is to provide the essential general information
about OSP 2 , which is necessary in order to begin working with the system.
This includes a description of the organization (breakdown into modules), in-
structions on how to compile, run and submit OSP 2 projects, and general
guidelines about programming OSP 2 . Because of its introductory nature, this
chapter should be read/reviewed before taking on any of the OSP 2 projects
your instructor may assign to you.

1.2 Operating System Basics

As explained in the Preface to this book, OSP 2 is organized as a collection of
modules, each corresponding to a class of resource that OSP 2 is intended to
manage. For your OSP 2 programming assignments, your instructor will assign
you one or more of these modules to implement, plug back into the rest of the
system, and run via a simulation to ensure that your code is working correctly
and efficiently. This chapter describes in some detail this division of OSP 2 into
modules and also provides you with other helpful information you will need to
carry out your assignments. First, though, we shall step back and ask ourselves
the questions: What is an operating system, and what kind of operating system

2 1. Organization of OSP 2

is OSP 2?

What is an Operating System? In order to understand exactly what
OSP 2 is and how it is organized, it is useful to first consider the basic question:
What is an operating system? Two generally held views are that an OS is an
extended machine, and an OS is a resource manager. According to the first view,
the function of an operating system is to present the user with the equivalent
of an “extended machine” or “virtual machine” that is easier to program than
the underlying hardware. This is accomplished through the operating system’s
system call interface: the collection of system calls that application programs
may invoke to obtain one kind of service or another. For example, there are
system calls to read and write files and to set the value of timers. Moreover, it
is much easier to invoke these system calls to obtain system service as opposed
to mucking around with hardware-specific instructions and machine registers,
which one would be forced to do if there was no OS present.

Two well-known examples of system-call interfaces are the Win32 API
(application programming interface) for various flavors of Microsoft Windows
(Windows 2000/XP/Vista), and POSIX for the Unix flavor of operating sys-
tems, such as System V, BSD, and Linux. OSP 2 has its own system call in-
terface, and you will be introduced to the system calls (Java methods) that
constitute this interface in the subsequent chapters of this book.

According to the second view, an operating system is responsible for effi-
ciently and fairly managing the resources of a computer system. These include
processors (CPUs); memory (physical and virtual); devices such as disks; files
and directories; and network connections (ports). By efficient, we mean that the
OS should aim to maximize resource utilization whenever possible. By fair, we
mean that users programs should be granted equitable allocation of resources
during their execution. Note that most of the example resources we have listed
are physical ones. One exception is files and directories. The part of the OS
responsible for these “logical resources” is often called the file system.

As we will make clear later in this chapter, the view of an operating system
as a resource manager is well suited to OSP 2 , as OSP 2 ’s system call interface
is organized in terms of the various resources OSP 2 is intended to manage.
More specifically, OSP 2 is organized into a number of modules—Java packages
to be precise—and there is one such module for each type of resource OSP 2

is asked to manage. For example, there is an OSP 2 module for each of mem-
ory, devices, ports, etc., and each module exports (defines) a number of Java
methods relevant to that module. Collectively, these methods make up OSP 2 ’s
system call interface.

1.2 Operating System Basics 3

Different Flavors of Operating Systems. To better understand OSP 2 ,
it is also useful to realize that there are different flavors of operating systems
available for the choosing. Some of those that immediately come to mind, and
which you have probably heard of, are Unix, Linux, Windows, and MacOS.
These systems differ mainly in the way they are structured and, of course, in
their system call interfaces. Systems like Windows XP/Vista, Solaris (a version
of Unix from SUN Microsystems), and Mach (an OS developed at Carnegie
Mellon University in the 1980s and which later influenced a number of com-
mercial operating systems, e.g., MacOS X) can be viewed as object-oriented in
the following sense: basic system resources are represented as objects and there
exist well-defined message-passing interfaces between objects.

Although OSP 2 is not modeled after any particular OS, a bias towards
Unix and Mach can be seen in some parts of its architecture. The Unix bias is
most evident in the FileSys package, where i-nodes are used to represent files
stored on disk and directories map file names to i-numbers (inode indices). The
Mach influence can be detected in the Ports package where Mach-like ports
are used for interprocess communication. Mach also uses ports for exception
handling (each process has an exception port), a topic not treated by OSP 2 .

OSP 2 is an object-oriented operating system in the truest sense of the
term. It is written in the object-oriented programming language Java. System
resources and data structures are represented by classes, thereby providing well-
defined method-call interfaces between objects à la Windows XP/Vista. And
subclassing is used to specialize objects; for example, the I/O Request Block
(IORB) is a subclass of Event so that threads can wait on it and be notified
of its occurrence.

Another way in which operating systems differ, and which in some sense
distinguishes older operating systems from newer ones, is whether or not they
support threads. In older systems like Unix, executing programs are organized
as processes: the OS is responsible for scheduling processes on the CPU and
switching the CPU from one process to another for the purposes of multi-
programming. Multiprogramming is a technique aimed at increasing resource
utilization. The basic idea is to have more than one process memory-resident at
a time, and to switch the CPU from a process that has become blocked waiting
for some event, say, the completion of an I/O operation, to a process that is
ready to execute. In this way, the CPU is kept busy doing useful work most of
the time, just the kind of thing a resource manager should strive for.

To conclude our brief look at multiprogramming, we should consider a little
more carefully what it means to switch the CPU from one process to another, an
operation commonly referred to as a context switch. Several steps are involved.
First, the currently executing process must be removed from the CPU and
placed on a queue associated with the event on which it is waiting. Then the

4 1. Organization of OSP 2

process the OS has decided to schedule next for execution must be dispatched
on to the CPU. This involves resetting a number of machine registers (such as
the program counter, general-purpose registers, memory-management registers,
etc.) to values associated with the newly dispatched process when it was last
running. The execution of this process can now resume. This is an admittedly
simplified view of what’s behind a context switch; the subject is treated more
thoroughly in Chapter 4.

In newer systems like Mac, Solaris, and Windows 2000/XP/Vista, the
schedulable and dispatchable units of execution are no longer processes but
rather threads; a process simply serves as a container for one or more threads.
Processes of this kind are usually referred to as tasks, and that shall be the
convention adopted in this book. So what does it mean for a task to be a “con-
tainer” for threads? It means that the constituent threads of a task share the
resources allocated to the task, including memory, files, and communication
ports. As a result, switching the CPU from one thread to another is a lot sim-
pler than switching the CPU from one process to another process as required
in an OS that does not support threads. As we shall see, OSP 2 supports tasks
and threads.

Operating Systems are Event-Driven. Operating systems are a perfect
example of so-called event-driven systems. As the name applies, an event-driven
system goes into action in response to the occurrence of some event that it is
familiar with. For example, a GUI (graphical user interface) program is an
event-driven system that responds to clicks of the mouse made by the user; the
precise piece of code that gets executed depends on what widget (tool-bar item,
button, radio dial, etc.) gets clicked. In the case of operating systems, the events
that an OS responds to include system calls made by user (or even system)
programs, hardware interrupts, and machine errors. Event-driven systems are
typically structured as one large case-statement contained in a while-loop that
“catches” the various events the system is intended to respond to. When an
event is caught, the case in the case-statement corresponding to that event is
executed.

This kind of event-loop structure is indeed present in operating systems.
Consider, for example, how a system call gets executed in a typical OS.The
calling program first pushes the parameters of the system call on the system
stack. The system call number is placed in a register and a trap instruction is
executed to switch from user mode to kernel mode. The kernel examines the
system call number and branches to the correct system call handler, usually
via a table of pointers to system call handlers indexed on the system call num-
ber. At that point, the system call handler runs and, when finished, control
may be returned to the calling procedure at the instruction following the trap

1.2 Operating System Basics 5

instruction.
Hardware interrupts are handled in a similar event-driven way by an OS.

In this case, a portion of system memory is set aside for the interrupt vector.
Using the device number of the device that caused the interrupt, the interrupt
vector may be indexed into to find the address of the interrupt handler for this
device.

OSP 2 is also event-driven, not surprising given that, after all, it is an
operating system. However, OSP 2 responds to simulated events. That is, at
the core of OSP 2 is a simulator called the event engine (see Figure 1.1) that
semi-randomly generates events of the kinds discussed above (system calls,
hardware interrupts, etc.). In response to such an event, the appropriate Java
method is called. For example, suppose the event engine generates an event
corresponding to an instance of the system call for opening a file. Then the
method open() in class FileSys will be called. Moreover, if your instructor
has assigned module FileSys to you as a project, then it is the code that you
wrote for method open() that will be executed in response to the event. This is
actually a somewhat simplified view of how things work in OSP 2 . Section 1.9
explains OSP 2 event handling in greater detail.

What this all means is that in OSP 2 , there are no user programs per se
that are being executed; all such programs are simulated by the event engine
in the form of a stream of events that OSP 2 responds to. There are several
advantages to this simulation-based approach. First, events are passed through
a so-called interface layer (IFL) of OSP 2 that sits between the event engine
and the various OSP 2 modules in which the code for the system calls resides
(see, again, Figure 1.1). The IFL therefore has the opportunity to monitor the
execution of system call methods, making sure that the actions taken by these
methods are semantically correct. Should an error be detected in a student
implementation of a system call method, the IFL can return a meaningful
error message to the student. These messages can be a great help to you in
debugging your code.

The IFL performs another useful role as far as students (and instructors!)
are concerned: it gathers statistics about the system’s performance as the event
stream is processed. Example statistics collected by the IFL include cpu uti-
lization, number of page faults, and disk-arm movement measured in number
of tracks. These statistics are very helpful in gauging the performance of your
cpu scheduling algorithm, page replacement scheme, disk scheduling algorithm,
etc.

Another advantage of the simulation-based approach is that to debug the
OS modules that the student writes there is no need to write and run user-level
test programs (as would be the case if you were working with a real OS): the
simulator provides the event stream for testing. Moreover, the make-up and

6 1. Organization of OSP 2

intensity of this event stream generated by the event engine can be adjusted
dynamically by manipulating the simulation parameters. For example, if the
instructor has assigned module FileSys as a project, he can set the simulation
parameters so that the event stream will contain a high percentage of file-system
related events. This yields a simple and effective way of testing the quality of
student programs.

User programs are not the only thing simulated in OSP 2 . The underlying
hardware is simulated as well and includes a CPU, disk, system clock, hardware
timer, and interrupt vector. The simulated hardware of OSP 2 is described fully
in Section 1.4.

OSP 2 ’s Microkernel Architecture. An interesting topic in operating-
system design is the monolithic kernel versus microkernel architecture distinc-
tion. Here the term “kernel” is used to refer to that portion of the operat-
ing system that runs in kernel mode: the more privileged mode of execution,
as compared to user mode, where executing code has access to system data
structures and services. Getting back to the monolithic-versus-microkernel dis-
tinction, a monolithic kernel groups together all operating-system functionality
into a single process while a microkernel assigns only a few essential functions
to the kernel, including address spaces, interprocess communication, and ba-
sic scheduling. The microkernel approach is also typified by well-encapsulated
module boundaries for basic services with well-defined interfaces.

As depicted in Figure 1.1 and described above, OSP 2 is hierarchically struc-
tured, consisting of three main layers: the event engine, the IFL, and the student
modules. Once control enters a student module, the system can be considered
to be in kernel mode. Since there are no actual user programs in OSP 2 , re-
placed instead by a stochastic simulation of user threads in the form of an event
stream, there is no user mode in OSP 2 to speak of. Therefore, the file system,
task-management subsystem, virtual memory-management subsystem, etc. run
in kernel mode.

Because of OSP 2 ’s pure object-oriented design, all OS subsystems, includ-
ing the primitive ones dealing with activities such as thread scheduling and
interprocess communication, are encapsulated in modules (classes) with well-
defined method interfaces. The kind of architecture adopted by OSP 2 is some-
times referred to as modified microkernel architecture.

1.3 OSP 2 Organization

OSP 2 comprises a number of projects that may be assigned to students as

1.3 OSP 2 Organization 7

programming assignments. Each project involves the implementation of a sep-
arate Java package consisting of one or more Java classes and their associated
methods. Because of their role as potential programming assignments, we shall
often refer to these packages as student packages or student projects. It
should be understood, however, that reference implementations of these pack-
ages are part of the standard OSP 2 distribution and must be in place for the
system to function normally (unless the reference implementation of a package
has been replaced by a student implementation). Each student package is re-
sponsible for managing its own class of system resources, as described in the
following:

Devices: Handles I/O requests for secondary storage devices such as disk
drives.

FileSys: Implements the file system including basic file operations and direc-
tory structures.

Memory: Manages physical and virtual memory using techniques such as
paging and segmentation.

Resources: Manages abstract resources of the system using deadlock detec-
tion and deadlock avoidance algorithms.

Tasks: Controls the creation and deletion of tasks, each of which is a container
for a set of threads and their associated resources.

Threads: Responsible for creating, killing, dispatching, suspending, and re-
suming threads, the fundamental units of execution in OSP 2 .

Ports: Implements an interprocess communication facility that allows threads
to send messages to each other.

To illustrate how student projects are organized, consider the Memory

module of OSP 2 . This module corresponds to the Java package osp.Memory

and contains the classes PageFaultHandler, PageTableEntry, and Frame-

TableEntry, among others. Each of these classes is kept in its own .java file:
PageFaultHandler.java,PageTableEntry.java,FrameTableEntry.java, etc.
For the Memory project, students are expected to implement the various
classes associated with these files.

At the heart of OSP 2 is the Event Engine, the event-based simulator
that drives the execution of the student packages. The events generated by
the event engine are calls to methods in student packages, representing system
calls (e.g. create a task, write a file) or hardware interrupts (e.g. disk interrupt,
page fault). Collectively, they simulate the behavior of a stream of executing
programs in a multiprogramming operating-system environment.

There is also a layer that sits between the event engine and the student layer,
the so-called Interface Layer or IFL. The IFL monitors the execution of the

8 1. Organization of OSP 2

student packages for the purpose of catching semantic errors in student code
(and subsequently producing intelligible error or warning messages), and for
gathering performance statistics. Thus, the IFL can be viewed as a protective
“wrapper” around the student packages. The logical structure of OSP 2 is
depicted in Figure 1.1.

Tasks

FileSysMemory

IFL

Resources

Resources

Threads

IFL

Engine
Event Devices

Tasks

IFL

Ports

IFL

Memory

IFL

FileSys

IFL

Student code

IFL

Student code wrappers (IFL)

Devices

Threads

Ports

Figure 1.1 The logical structure of OSP 2 .

1.4 Simulated Hardware in OSP 2

The Hardware and the Interrupts packages of OSP 2 model the hardware-
oriented aspects of the simulated multiprogramming operating system. Hard-
ware consists of four Java classes, which we now describe.1

CPU: This class models the CPU of the simulated machine. It defines one
method, interrupt(), which is used to generate an interrupt with the
given type (e.g. disk interrupt, page fault). The interrupt vector supported
by the Interrupts package is described later in this section.

1 Note that all the methods of the Hardware and Interrupts packages are declared
as final, meaning that they cannot be subclassed. This is done for object-oriented
design reasons: you should think of these classes as “perfect” or that, conceptually,
they should have no subclasses. Many of the methods contained in other OSP 2
packages are also declared to be final for the same reason.

1.4 Simulated Hardware in OSP 2 9

Disk: This class represents a hard disk attached to the system and is declared
as follows:

public class Disk extends Device;

It implements methods that provide access to the physical characteristics
of the disk and its current state of operation. The methods in this class
are:

� final public int getPlatters()

Returns the number of platters.

� final public int getTracksPerPlatter()

Returns the number of tracks per platter.

� final public int getSectorsPerTrack()

Returns the number of sectors per track.

� final public int getBytesPerSector()

Returns the number of bytes per sector.

� final public int getRevsPerTick()

Returns the number of revolutions per tick.

� final public int getSeekTimePerTrack()

Returns the average time it takes to move the head to the adjacent
track.

� final public int getHeadPosition(int track)

Returns the position of the disk head, i.e., the cylinder where the head
is parked.

These methods might be used for implementing I/O schedulers; see Schedul-
ing of Disk Requests, Chapter 6, for more information about OSP 2 devices.

HClock: This class represents the hardware clock. It can be used to access the
current simulation time using the following method:

� public final static long get()

Returns current simulation time.

HTimer: This class represents the hardware timer. If set to a positive integer,
a timer interrupt will occur after that many (simulated) clock ticks. This
class provides the following methods:

� public final static void set(int time)
Sets timer. Time is relative to the current time. If time is zero or negative,
timer interrupts are disabled.

10 1. Organization of OSP 2

� public final static long get()

Returns time left until the timer interrupt. Returns a negative number
if timer interrupts are disabled.

The Interrupts package of OSP 2 consists of one Java class, which is im-
portant for several student projects.

InterruptVector: This class represents the hardware register called the in-
terrupt vector. It contains information about the interrupt that just oc-
curred. Interrupt handlers check the interrupt vector for the information
about the interrupt so that they can properly handle the interrupt. Not all
parts of the interrupt vector are relevant to every kind of interrupt. For in-
stance, for timer interrupts, only the type of the interrupt (i.e., that it came
from the timer device) is important. On the other hand, for a disk inter-
rupt, the relevant information also includes the IORB (I/O Request Block;
see Section 1.6) that caused the interrupt. For a page fault, the relevant
information includes the thread and the page that caused the interrupt,
etc. The student is supposed to set and query the appropriate parameters
of the interrupt vector depending on the type of interrupt. The methods
provided by this class are:

� final static public void setInterruptType(int newInterruptType)

Sets the type of the interrupt: PageFault, DiskInterrupt, or Timer-
Interrupt; see GlobalVariables for more details.

� final static public int getInterruptType()

Returns the type of the interrupt.

� final static public ThreadCB getThread()

Returns the thread that caused the interrupt.

� final static public void setThread(ThreadCB thread)

Sets the thread that is about to cause the interrupt. In this way, other
modules can query the interrupt vector to find out which thread caused
the interrupt.

� final static public PageTableEntry getPage()

Returns the page that caused the interrupt (pagefault).

� final static public void setPage(PageTableEntry newPage)
Sets the page that caused the interrupt. In this way, other modules can
query the interrupt vector to find out which page has cause the page
fault.

� final static public void setReferenceType(int referenceType)

Sets the reference type of a memory interrupt, i.e., MemoryRead,
MemoryWrite, or MemoryLock; see GlobalVariables.

1.5 Utilities 11

� final static public int getReferenceType()

Returns the type of memory reference that caused the interrupt.

� final static public Event getEvent()

Returns the event that caused the interrupt.

� final static public void setEvent(Event newEvent)

Sets the event that is about to cause the interrupt.

The hardware components listed above are provided by the OSP 2 system
and are not to be implemented by the student. In contrast, OSP 2 also has
hardware, notably the memory management unit (or MMU), that is part
of a student package, module Memory. OSP 2 memory management is dis-
cussed in Chapter 5.

1.5 Utilities

The utilities package contains a number of classes that are needed purely for
simulation support. It also provides a class, GlobalVariables, that is required
by the student packages, and several other “utility” classes that assist students
in implementing their projects.

The class GlobalVariables comprises a number of variables that de-
fine the nature of a memory reference (e.g. MemoryWrite), interrupt types
(e.g. TimerInterrupt), and method return status (e.g. SUCCESS and FAILURE).
It also defines constants such as NONE and SwapDeviceID. The former repre-
sents a common return value used for integer objects (e.g. the value returned
when a free frame is not found) and the latter is the device number of the swap
device.

All of these constants are integers and must be referred to using their sym-
bolic names. For debugging, however, it is often useful to know what the corre-
sponding numeric values are. This is accomplished with the help of the following
methods:

� final static public String printableStatus(int status)

Returns the printable representation of the following constants:

– ThreadReady – status of a ready-to-run thread.

– ThreadRunning – status of a running thread.

– ThreadWaiting – status of a waiting thread. (There are multiple levels
of waiting, so this status is printed as ThreadWaitingX, where X is the
waiting level. See Chapter 4 for details.)

12 1. Organization of OSP 2

– ThreadKill – status of a killed thread.

– TaskLive – status of a live task.

– TaskTerm – status of a killed task.

– PortLive – status of a live communication port.

– PortDestroyed – status of a destroyed communication port.

This method is useful for debugging. For instance, if you need to find out
the status of a thread, you might want to display that status on the screen.
But status is an integer, which does not hold much information for a human
reader. The method printableStatus()will convert such an integer into,
say, ThreadReady (a string).

� final static public String printableRequest(int request)
Returns human-readable representations of request constants, which are:

– MemoryRead – Memory read request (in refer()).

– MemoryWrite – Memory write request (in refer()).

– MemoryLock – Memory lock request (in lock()).

– FileRead – File read request (in read()).

– FileWrite – File write request (in write()).

� final static public String printableDevice(int device)

Returns human-readable representations for devices, which are:

– SwapDeviceID – the number of the swap device.

– Disk1, Disk2, Disk3, Disk4 – the disk devices.

� final static public String printableInterrupt(int interrupt)

Returns human-readable representations for interrupts, which are:

– PageFault – Pagefault interrupt.

– DiskInterrupt – Disk interrupt.

– TimerInterrupt – Timer interrupt.

� final static public String printableRetCode(int retcode)

Returns human-readable representations of method return-codes. The sup-
ported return-codes are:

– SUCCESS – successful completion.

– FAILURE – unsuccessful completion.

1.5 Utilities 13

– NotEnoughMemory – returned by the page-fault handler when it cannot
find a frame to satisfy a page fault.

� static public String userOption

This variable is set using the command line option -userOption. It can
be used to pass a parameter to the student program when OSP 2 is invoked
from command line. This variable is not used internally by the simulator and
its use is solely up to the student’s discretion.

Other useful classes in the Utilities package include:

MyOut: The methods in this class can be used to insert messages into the
OSP 2 system log for debugging purposes. The system log tracks system
events as they occur and messages inserted into the log by students are
inserted in chronological order with other system events. The following
methods are provided:

� final public synchronized static void print(Object where,
String msg)

Prints a message to the system log. The argument where must be an
object from which the package and the class from where print is called
can be derived. If print() is called from a non-static method, then
the where argument should be this (the Java keyword that denotes the
context object); otherwise, if print() is invoked from within a static
method, then the where argument should be a string-object of the form
"osp.packageName.className". For instance,

MyOut.print("osp.Tasks.TaskCB", "Hello World!");

� final public synchronized static void error(Object where,

String msg)

Prints an error message to the system log and terminates OSP 2 . The
format of the where argument is the same as before. This method can
be used to halt execution of OSP 2 when a bug is discovered; further
execution of OSP 2 under these circumstance is probably not useful un-
der the circumstances. The error() method also causes a stack trace
and the current OSP 2 snapshot to be included in the log for debugging
purposes.

� final public synchronized static void checkCondition(boolean

condition, Object where, String msg)

Similar to error() except that the error message is printed and OSP 2

is terminated only if the boolean condition is false.

� final public synchronized static void warning(Object where,

String msg)

14 1. Organization of OSP 2

Similar to print() except that a warning message is printed to the
log. Unlike error() and checkCondition() (but like print()), the ex-
ecution of OSP 2 can proceed after this method is called. Like method
error(), a snapshot and a stack trace are included in the system log.
This method can be used by the student to check conditions that are not
necessarily fatal to the execution, but are still undesirable and must be
fixed.

� final public synchronized static void snapshot()

Although error(), warning(), and checkCondition() can be used to
obtain the current OSP 2 snapshot, the snapshot() method can be used
to insert a snapshot into the system log at any time, not necessarily when
a warning or an error condition is detected.

GenericList: This class provides the following methods for maintaining dou-
bly linked lists of objects:

� public GenericList() implements GenericQueueInterface

A constructor that creates an empty list.

� public GenericList(Object obj)

A constructor that creates a list and initializes it with a given object.

� public final int length()

Returns the length of the list.

� public final boolean isEmpty()

Returns true if the list is empty, false otherwise.

� public final synchronized void insert(Object obj)

Inserts an object at the beginning of the list.

� public final synchronized void append(Object obj)

Appends an object to the end of the list.

� public final synchronized Object remove(Object obj)

Removes the specified object from the list and returns the object. Null,
if the object is not found.

� public final synchronized Object appendToCurrent(Object obj)

Inserts the object obj into the list after the current item in the list. The
current item is set by the enumerators (see below) as they traverse the
list (after each call to nextElement()).

� public final synchronized Object prependAtCurrent(Object obj)

Inserts the object obj into the list before the current item in the list.
The current item is set by the enumerators (see below) as they traverse
the list (after each call to nextElement()).

1.5 Utilities 15

� public final synchronized boolean contains(Object obj)

Returns true if the specified object is in the list, false otherwise.

� public final synchronized Object removeHead()

Removes the object at the head of the list and returns the object. Null,
if the list is empty.

� public final synchronized Object removeTail()

Removes the object at the tail of the list and returns the object. Null,
if the list is empty.

� public final synchronized Object getHead()

Returns the object at the head of the list without removing the object.

� public final synchronized Object getTail()

Returns the object at the tail of the list without removing the object.

� public final synchronized Enumeration forwardIterator()
An iterator is a general Java mechanism for dealing with collections

such as sets and lists. A forward iterator returns an object of class
Enumeration (a standard Java class), which can then be used to conve-
niently traverse the list. For instance,

GenericList list;

.....

Enumeration enum = list.forwardIterator();

while(enum.hasMoreElements()) {

Object obj = enum.nextElement();

}

Each call to nextElement() advances the current pointer in the list.
The current pointer is the point of insertion for the previously described
methods appendToCurrent() and prependAtCurrent().

� public final synchronized Enumeration forwardIterator(Object

first)

Works like forwardIterator() but starts the iteration from the first
occurrence of the specified object in the list.

� public final synchronized Enumeration backwardIterator()

Similar to forwardIterator() but traverses the list backwards.

� public final synchronized Enumeration backwardIterator(Object first)

Like forwardIterator(Object first) but traverses the list back-
wards.

16 1. Organization of OSP 2

GenericQueueInterface: The GenericQueueInterface that GenericList

implements contains the following methods:

� public int length();

Returns the number of elements in the queue.

� public boolean isEmpty();

Returns true if the queue is empty, false otherwise.

� public boolean contains(Object obj);

Returns true if the queue contains object obj, false otherwise.

This interface mandates only the methods that OSP 2 itself uses internally.
For classes that use this interface you might need to define additional meth-
ods, such as insertion into the queue and deletion of queue members.

1.6 OSP 2 Events

Like any other operating system, OSP 2 is event-driven. When a thread exe-
cutes an I/O operation, it blocks until the I/O completes. When one threads
needs to communicate with another, it sends a message and might decide to
block itself until a response arrives. When a thread blocks, we say that it is
waiting for an event to occur (like the completion of an I/O operation or
message delivery) so that the thread may continue its execution.

In a typical operating system, events are represented by some kind of event
data structure. A thread that wishes to block itself, or, more generally, to be
notified about the completion of an event, executes a suspend() operation on
that event, which places the thread on the event’s waiting queue. The event
“happens” when some other thread (a user or a system thread, depending on
the type of the event) announces that the event has taken place. For example,
in the case of an I/O operation, a disk interrupt will cause the disk-interrupt
handler to execute and the handler eventually will announce the completion of
the I/O event. In OSP 2 , an event is an object and such an announcement is
made by executing the notifyThreads()method associated with the event. As
a result, threads waiting on the event are unblocked by the operating system
and can continue their execution.

In OSP 2 , events are represented by the Event class. A basic event has
an id, which serves to distinguish this event from other events and a waiting
queue. Thus, an event provides the means for suspending threads when they
have to wait, and subsequently locating them when they are to be resumed.

In practice, the Event class is almost always subclassed before it is used.
This is because threads are usually interested in very specific kinds of events

1.6 OSP 2 Events 17

rather than just generic events. For example, a thread is suspended because it
has to wait for an I/O operation to complete or a page to be swapped in, or
because it is suspended on a communication port until a message arrives. Thus,
OSP 2 treats memory pages, I/O request blocks (IORBs), and communication
ports as events in the sense that all these classes extend the class Event.

The Event class provides the methods necessary for maintaining the waiting
queue, and these methods can be used on pages, ports, and IORBs when these
are used in their capacity as events. The methods provided by class Event are
as follows:

� public void addThread(ThreadCB thread)
Add the specified thread to the waiting queue of the event. No checks are
performed to ensure that the thread is not already on the queue.

� public void removeThread(ThreadCB thread)

Remove the specified thread from the queue. If the thread is not found, return
silently.

� public boolean contains(ThreadCB thread)

Return true if the thread is on the waiting queue for this event, false other-
wise.

� public int getNumberOfThreadsWaiting()

Returns the length of the waiting queue.

� public GenericList getThreadList()

Returns the waiting queue itself.

� public ThreadCB getHead()

Returns the thread at the head of the waiting queue or the null object.

� public void notifyThreads()

Resumes all threads on the waiting queue (i.e., executes resume() on each
one of them) and empties the queue. It is quite possible that some threads
on the waiting queue have been destroyed while waiting. In this case,
notifyThreads() simply removes the destroyed threads from the queue as
executing resume() on such a thread would be an error.

Several projects in OSP 2 make extensive use of events and we will refer back
to this section when necessary.

18 1. Organization of OSP 2

1.7 OSP 2 Daemons

The implementation of certain functions of an OS can be facilitated through
the use of daemons: special system threads that run periodically and perform
“work” specified by the user. In OSP 2 , such work might include proactive
swapping out of dirty memory pages, as required by some memory-management
algorithms, and deadlock detection.

Daemon support in OSP 2 is provided by the Daemon class and the interface
DaemonInterface. To use a daemon, one creates an object in a class that
implements DaemonInterface and then registers this object with the system.
The following statements declare a class of daemons whose only job is to insert
a notice in the system log:

class MyDaemon implements DaemonInterface

{

public void unleash(ThreadCB thread)
{

MyOut.print(this, "My daemon executed at time: "

+ HClock.get());

}

}

The only mandatory method in this class is unleash, which should contain
the code you want the daemon to execute. For instance, in case of a deadlock-
detection daemon, a method should be provided that executes the appropriate
deadlock-detection algorithm. This method is called by OSP 2 when it wakes
up the daemon.

Defining a daemon is your responsibility. You also need to register it with
the system and provide three things: the name of the daemon (for easy iden-
tification of the daemon in a system trace), a concrete daemon object to call,
and the amount of time that should pass between invocations of the daemon.
This is typically done when OSP 2 begins executing, inside the init() method
that exists in the main class of each student package. Here is an example of
registering a daemon:

Daemon.create("My own daemon", new MyDaemon(), 20000);

The first argument can be an arbitrary string. The second is an object of the
daemon class defined earlier. The third argument tells OSP 2 that the daemon
should be periodically woken up after every 20,000 ticks.2 You can create several
2 OSP 2 does not guarantee that it will wake up the daemon exactly after the

specified number of ticks, but it will try to wake it up as soon as possible after the
specified interval.

1.8 Compiling and Running Projects 19

daemons if several periodic jobs need to be performed by the module that you
are implementing. Typically the requirement to use daemons would be part of
the assignment given out by your instructor, but you might also decide to use
them on your own, based on your understanding of the problem.

1.8 Compiling and Running Projects

A student project assignment consists of several files:

1. Demo.jar, which contains a demo version of OSP 2 . It can be used to
get a general idea of how OSP 2 works, to familiarize yourself with the
graphical interface and command-line options of the system, and to create
configuration files for running OSP 2 with different parameters.

2. Template files, each of which contains the necessary import statements, the
class header of the public class to be implemented, and the headers of the
public methods that must be implemented by the student. For instance,
for the Threads project, the template files would be

a) ThreadCB.java

b) TimerInterruptHandler.java

3. OSP.jar, which contains the compiled classes of the OSP 2 simulator that
drive the execution of the classes in the student project. When your imple-
mentation of the classes in the project is complete, they should be compiled
and linked with the OSP.jar file.

4. A Makefile that simplifies the compilation process under Unix-based sys-
tems (Solaris, Linux, Free BSD, etc.).

5. The Misc subdirectory, which includes two files:

a) params.osp

b) wgui.rdl

The first file contains the parameters that will drive the simulation and the
second file is a configuration file for the GUI. You should not edit either of
these files manually. In fact, there is no reason to touch wgui.rdl at all,
unless you are not satisfied with the overall look of the graphical interface
:-). However, you might want to run OSP 2 with different parameters
and create a new configuration file derived from params.osp. The only
recommended way of doing this is to change the parameters through the
GUI of the demo version of OSP 2 and then save the new parameters in a

20 1. Organization of OSP 2

new file. A GUI panel that lets the user change the simulation parameters
is shown in Figure 1.2.

Figure 1.2 Panel for changing OSP 2 simulation parameters.

Java settings. OSP 2 requires JDK 1.5 or a later version. To run and
compile OSP 2 you must first make sure that Java is properly set up on your
machine and that your personal configuration files are set appropriately. This
simply means that the environment variable PATH is set appropriately. For
Windows, this variable should be set in the autoexec.bat file or through the
control panel as follows:

set PATH=%PATH%;C:\jdk\bin
The second component in this setting should, of course, point to the place where
the Java executables are installed and our choice of C:\jdk\bin is merely an
example.

For Unix-based systems, the setting depends on the type of the shell used.
We show the settings for the two most popular shells: bash and csh. Settings

1.8 Compiling and Running Projects 21

for other shells (such as ksh, sh, tcsh) would be similar to either bash or csh,
the only difference being the name of the configuration file.

To set the PATH variable for bash, place the following in the .bashrc file in
your home directory:

PATH=/usr/local/bin/jdk:$PATHexport PATH

As before, /usr/local/jdk/bin is just an example. The actual location of the
Java executables can vary.

For csh, the PATH variable should be set in the file .cshrc in your home
directory:

setenv PATH /usr/local/bin/jdk:$PATH

Running the demo program. To run the demo version of OSP 2 , simply
type:

java -classpath .:Demo.jar osp.OSP

(use .;Demo.jar on Windows).
Some installations of JDK might require that you set the CLASSPATH envi-

ronment variable (this requirement would then be part of the Java installation
instructions). In this case, you might need to run OSP 2 as follows:

java -classpath .:Demo.jar:${CLASSPATH} osp.OSP

for Unix-based systems and

java -classpath .;Demo.jar;%CLASSPATH% osp.OSP

for Windows.

Compiling and running the project. Once your implementation of the
project is finished, you are ready to compile and run the system. Here is how
to do this.

On Unix-based systems, simply type make, and the project will be compiled.
To run it without the GUI, type make run; with the GUI, type make gui; and
to run with the debugger type make debug. Sometimes make clean; make can
be helpful if you need to get rid of stale .class files and force recompilation of
the entire project. That’s all! The only caveat is that this must be a version of
GNU make, which is available on most Unix-based systems, albeit sometimes
under different names, such as gnumake or gmake. To find out it your make-
program is a GNU make, type

make --version

22 1. Organization of OSP 2

If it does not say that this is GNU make or if it does not understand the
--version argument, then it is not GNU make, and you should ask the system
administrator if this version of the make-program is installed (and under which
name). If you cannot locate the appropriate make-program, read on.

Figure 1.3 shows what you can expect when running OSP 2 with a GUI
and Figure 1.4 shows a run without the GUI.

Figure 1.3 An OSP 2 run with a graphical interface.

The following commands can be used to compile and run OSP 2 on a Unix-
based system:

javac -g -classpath .:OSP.jar: -d . *.java

java -classpath .:OSP.jar:. osp.OSP

jdb -classpath .:OSP.jar:. osp.OSP

1.8 Compiling and Running Projects 23

Figure 1.4 An OSP 2 run without the GUI.

The only difference under Windows is that one has to replace “:” with “;”.
The first command compiles the project, the second runs it, and the third
runs it under the Java debugger.3 Running OSP 2 with the Java debugger can
be excruciatingly slow, so you should try this only if you need to trace the
execution of your program or examine it in some other way that the debugger
provides.

Again, some installations of JDK might insists that you set the CLASSPATH

environment variable and attach it to the -classpath argument as explained
earlier.

OSP 2 command-line options. You can run OSP 2 with certain command-
line options. Here is the full list of options:

-help - lists all command-line options

-noGUI - runs the simulator without the GUI

-paramFile - use the next argument as the parameter file

-guiFile - use the next argument as GUI configuration file

3 Some Java distributions for Linux have problems with running the debugger due to
broken shell scripts. When run, the debugger will complain that it cannot load cer-
tain libraries. To fix this, you must set the environment variable LD LIBRARY PATH
to something like /usr/local/jdk/lib/i386:$LD LIBRARY PATH. You might have
to do some experimentation to find out the exact path.

24 1. Organization of OSP 2

-userOption - use the next argument to set the global

variable userOption

-debugOn - includes debugging messages in the OSP system log

Among these, only -userOption, -noGUI, and -paramFile are useful for
student projects. The first option, -userOption, allows you to pass a string
argument to the student program from the command line. As a result, the
string argument specified on the command line becomes the value of the global
variable userOption. This can be used, for example, when experimenting with
different project implementations, based, perhaps, on different algorithms, and
a command-line option is needed to indicate which algorithm to execute. This
option can also be used to invoke debugging code that is normally hidden.
The second option, -noGUI, runs OSP 2 without the GUI, which saves time.
OSP 2 ’s GUI is very useful as a tool for setting the simulation parameters, but
apart from that it is just a very fancy progress bar and, as such, is intended to
distract serious people from doing work.

The second useful option, -paramFile, can be used to run OSP 2 with
alternative parameter files, which can be helpful for debugging. The use of
-debugOn option is not recommended for student projects. It is mainly a tool
for debugging OSP 2 itself, and the messages it produces can be confusing to
someone who is not familiar with the source code of the system. Apart from
that, with this option turned on, the OSP system log can be in excess of 30M,
which might be a problem on shared file systems.

Here is an example of how to specify command-line arguments to the make

command under Unix:

make run OPTS="-paramFile my-other-param-file.osp -noGUI"

For Windows and for those Unix users who do not trust makefiles, the same
effect can be achieved as follows:

java -classpath .:OSP.jar osp.OSP

-paramFile my-other-param-file -noGUI

(This command should be typed on one line.)

1.9 General Rules of Engagement

This section describes important general conventions about writing code for
student projects.

1.9 General Rules of Engagement 25

1.9.1 A Day in the Life of an OSP 2 Thread

A key concept in OSP 2 is the thread, the schedulable and dispatchable unit
of execution in OSP 2 . Threads are simulated in OSP 2 by the event engine.
That is, the event engine, using a certain “stochastic model”, semi-randomly
decides how many threads to create, how long each of them will live, and what
services they will request of the OS while they are alive. A request-of-service
by a thread is represented in the event engine by an event corresponding to a
call to a method in one of the OSP 2 modules. For example, if OSP 2 wants
to simulate a request by a thread to read a certain file, an event is created
that will eventually result in a call to method do read() of class OpenFile of
package FileSys.

A key point that we will emphasize numerous times in this book is that
the threads that OSP 2 simulates represent the behavior of user programs or
applications. In a typical computing environment, an application program per-
forms some useful work for a user. To do so, the application requests services
from the operating system, such as memory allocation, the use of the CPU,
management of files, etc. The user sees the results of the work performed by
the application, but the details of how the services are implemented by the
operating system are normally hidden from the user.

In OSP 2 you have to take the opposite view: your concern is the oper-
ating system itself, and the user applications are faceless programs that you
know nothing about. The only time you become aware of these programs is
when they—or more precisely the simulated OSP 2 threads representing the
behavior of these programs—request services from you, the operating system.
The aim of each of student project is to implement a well-defined service, such
as memory or thread management, that might be requested by a typical ap-
plication. When a simulated OSP 2 thread requests a service from the OS, it
suddenly becomes “real”: a call is made to one of the methods in your project
and the simulated computation becomes live computation of one of the methods
that you implemented.

OSP 2 has a modular, object-oriented design with clear interfaces. Every
student project implements a particular service. The implementation of the
classes needed to complete each project is under the student’s control. For each
class, the student is required to implement certain methods and in doing so
can augment the class with any number of auxiliary methods or variables. The
student is also provided with a set of methods to operate on the “built-in” data
structures of the class (which are represented as private fields in the IFL layer).
In some cases, it becomes necessary to obtain services from other parts of the
system, which is also done through the published interfaces.

It is important to keep in mind that if you are assigned, say, the

26 1. Organization of OSP 2

memory-management project, Memory, then you are responsible for imple-
menting all the necessary functionality as defined by the project description.
OSP 2 will not attempt to provide any memory-related service, leaving every-
thing to you. However, like a Big Brother, it is watching and is very keen on
reporting errors.

When implementing a project, only the interfaces described in that project’s
description can be used. Method calls and classes that you might find in the
description of other projects will not work and are likely to result in a com-
pilation error. This is the result of the method-name obfuscation described in
Section 1.9.4, which is performed to prevent corruption of the internal system
state.

1.9.2 Convention for Calling Student Methods

One of the most important tasks of the OSP 2 simulator is to verify the actions
performed by student code for semantic correctness and to provide meaningful
error messages and warnings. This error checking is performed by the interface
layer of OSP 2 (or IFL). The IFL contains wrapper methods that validate the
state of the system before and after student code is executed. Because of these
wrappers, a special convention for naming and invoking methods must be fol-
lowed when implementing an OSP 2 project. To make the discussion concrete,
consider the Threads package, which is responsible for thread-management
tasks such as thread creation. There is both a Java class for threads in the IFL,
called IflThreadCB (the CB stands for “control block”), and a Java class for
threads in the student package, simply named ThreadCB (i.e. without the Ifl

prefix). Moreover, ThreadCB is a subclass of IflThreadCB and both of these
classes implement methods for thread creation (among others), with the IFL
method serving as a protective “wrapper” for the student-layer method.

To distinguish these thread-creation methods, the one defined in the su-
perclass is simply called create(), while the one in the subclass is called
do create(), i.e. the corresponding method name in the student package is
prepended with the prefix do_. In general, we have the following naming con-
vention.

Methods in the OSP 2 API that are to be implemented by the student
have the naming schema do_name, where name is the name of the
wrapper in the IFL.

There is an exception to this rule, namely the methods atError() and
atWarning(), which are introduced below.

This convention has several ramifications that the student must be aware
of when implementing a project. These are best understood by considering the

1.9 General Rules of Engagement 27

flow of execution in OSP 2 when an event is generated by the event engine and
subsequently “handled” by the appropriate classes in the IFL layer and student
package. Five main points of control can be identified within this execution flow;
see also Figure 1.5.

OSP Event Queuequeue
 head

event
 1

event
 2

event
 3

queue
 tail

event activation
times

1

2

Student code wrapper
(IFL)

Student
 code 4

5

3

Figure 1.5 Execution flow for handling an event.

1. The event engine selects the event at the head of the “event queue” for exe-
cution. The event is actually a call to one of the student methods although
control must go through the IFL. Assume, for the sake of discussion, that
the selected event is a call to the create() thread method. In this case,
the event engine calls create() in the IFL.

2. The IFL performs some bookkeeping for the purpose of detecting possible
errors in, and for monitoring the performance of, the student’s implemen-
tation of create() and then calls do create() in the student layer.

3. The student implementation of do create() performs the requested ac-
tion.

4. Control returns to create(), which verifies that the actions taken by the
student code were correct. If the student code executed incorrectly, an error
message is written to the simulation log and simulation halts.

5. Assuming the student code executed correctly, simulation proceeds to the
next scheduled event on the event queue.

Students should therefore adhere to the following additional naming convention:

28 1. Organization of OSP 2

When calling a method named name in this or another package, call
the method name, i.e. without the “do ” prefix.

In contrast, as noted above, when implementing a method named name, stu-
dents will actually implement the method do_name.

Note also that the student implementation should never directly refer to
the classes defined in the IFL layer. For instance, even though the method
dispatch() is defined in the class IflThreadCB, it is inherited by Thread-

CB and it should be called as ThreadCB.dispatch() rather than IflThread-

CB.dispatch().

1.9.3 Static vs. Instance Methods

When you receive a project assignment that contains the templates of the
methods to be implemented, you will notice that some methods are static (i.e.,
they apply to class objects) and some methods (those that do not have the
static keyword attached) work on instance objects.

This division of the project methods into static and instance methods comes
from the differences in their function. For example, the method do dispatch()

is static in class ThreadCB, because it makes no sense to call it on any particular
thread: the thread to be dispatched is not known at the time of the call and,
in fact, it is the job of the do dispatch() method to find such a thread and
give it control of the CPU, as described in Chapter 4.

On the other hand, methods do resume() and do suspend() in ThreadCB

are not static: they are called on specific thread objects, because the job of
these methods is to resume or suspend the threads on which the methods are
called. As usual in Java, the context object of a non-static method is accessible
through the variable this.

Therefore, when reading the description of each method in the project, it is
important to be aware of whether this method is static or an instance method.

1.9.4 Obfuscation of Method and Class Names

Chapters 3 through 8 describe the classes and methods that comprise the vari-
ous student projects. For each project, the student implementation may require
services implemented in other parts of OSP 2 and must call the appropriate
methods to obtain these services. Methods needed for one project, however, are
not necessarily needed for another. In some cases, incorrect use of methods that
belong to other packages might even corrupt the internal state of the system.

1.9 General Rules of Engagement 29

To prevent the student implementation from incorrectly using public meth-
ods that are not required for the given project, the names of these methods are
changed in that project by a special “obfuscater” program. For example, the
method isFree() of class FrameTableEntry is available in project Memory,
but it is obfuscated away and will cause a compilation error if it is used by
methods in project Threads.

1.9.5 Possible Hanging After Errors

When OSP 2 detects an error in a student program, it prints information about
the error and then tries to terminate. Graceful termination, however, is not al-
ways possible because OSP 2 is a multi-threaded application and termination
of some of the active threads might depend on student code (whose behav-
ior cannot be predicted). It is therefore possible that, after printing an error
message, OSP 2 may hang; in this case the system must be terminated by the
user.

1.9.6 Possible Exceptions After the End of Execution

On very rare occasions you might see exceptions that occur after the end of a
run of the simulator. This is nothing to worry about, however, as it does not
indicate a problem with your program. The reason for these exceptions is that
when the designated simulation time runs out, OSP 2 tries hard to stop all
the currently active Java threads. Unfortunately, it is not possible to terminate
threads immediately, so a thread may continue to run for a short while even
though some of the vital system objects may have already been destroyed. In
such situations, NullPointerException and other exceptions can occur.

1.9.7 General Advice: How to Figure it Out

When you begin an OSP 2 project, it is important to understand the specifi-
cations of the various student projects contained in the following chapters, and
how your implementation fits into the big picture. Perhaps, it is best to state
what this manual is not :

1. It is not intended to replace the textbook.

2. It is not intended to teach you the basic concepts in operating systems.

3. It is not intended to guide you every step of the way to the completion of

30 1. Organization of OSP 2

your project.

Instead, the description of a student project provides a complete description
of the API that you can use to implement the project and a description of the
functionality of each method in the project. The manual does not explain how
to put the pieces of the puzzle together—this is for you to figure out based on
your understanding of the subject.

The best advice is: think logically. In these projects you are implementing
parts of an operating system, which is probably very different from the kind of
programming you have done in the past. If you are in doubt about whether or
not it is appropriate for your implementation to take a certain action, consider
whether you would like it if the OS on your desktop behaved this way. For
example, suppose you are implementing a thread scheduler and at certain point
in the program you have to deal with the situation where no threads are left to
schedule. Should you leave the CPU idle or create and run a dummy thread,
thereby wasting computing resources? The answer should become obvious if
you just ask yourself the simple question: “Would I want my home computer
to behave this way?”

1.10 System Log, Snapshots, and Statistics

During a run, OSP 2 prints messages in the system log. Each message describes
a specific event that occurred during execution. Messages that come from the
simulator are prefixed with Sim:; those that come from student packages other
than the project-assignment module(s) are prefixed with Mod:; and those that
come from the project you are currently implementing are prefixed with My:.

Periodically OSP 2 dumps snapshots of the system state into the log file.
These snapshots are primarily intended for performance checking and debug-
ging. A snapshot contains a complete dump of main memory, the status of all
page tables, the status of all threads, including the queues they are in, and the
status of all communication ports.

In addition, the snapshot provides statistics such as CPU utilization, av-
erage service time (also known as average turnaround time) of an I/O
request and a thread, the average number of tracks swept on each device per
I/O request, and the average normalized service time. The last of these
describes the average relative delay suffered by each thread, and is determined
by the following formula:

Σi
CPU time used(threadi)
turnaround time(threadi)

total number of threads

1.11 Debugging 31

where the sum is over all threads (dead or alive). This is a better measure of
performance than the average turnaround time, and this statistic should be
kept as high as possible (but, of course, it cannot exceed 1).

It should be noted that some entries in the system log can have fairly long
lines, so to view the log it may be necessary to use a viewer with horizontal
scroll capability. For example, if you are running OSP 2 with a parameter file
that specifies long page tables (say, more than 64 pages), then you can expect
to need to use a scrollable viewer. Most text editors provide this capability.

1.11 Debugging

There is no special-purpose debugger for OSP 2 , but there are a few things that
can help. Generally, errors in student code can be divided in two categories:

1. Errors that cause Java exceptions.

2. Semantic errors, such as an incorrect action taken in response to a simulator
request. Examples include the failure to maintain the correct status of
a thread (e.g., ThreadWaiting instead of ThreadRunning) or replacing a
dirty page without first swapping it out to the swap device.

Errors of the first kind are much easier to fix since they can be identified
with the help of a Java debugger, such as jdb. For example, a Java debugger
can be used to determine where the exception NullPointerException has
occurred. In all likelihood, Java exceptions are due to errors in student code. If
an exception takes place in OSP 2 code, it does not necessarily mean that the
student code is correct; rather, it likely means that OSP 2 has failed to catch
the problem early enough to generate a meaningful error message to guide you
to the real problem.

Apart from tracking down exceptions, Java debuggers are not very useful
for debugging OSP 2 projects, especially for finding semantic mistakes in stu-
dent code. This is because such an error might be detected by OSP 2 thousands
of instructions after the erroneous action was performed by the student pro-
gram and using the debugger trace facility to track down the source of the
error might wear you down before the first signs of a problem begin to show
up. Therefore, the following procedure is recommended for finding and fixing
semantic problems.

System log. When OSP 2 detects a semantic error, it tries to come up
with as clear an explanation as possible. When an error or a warning is issued,

32 1. Organization of OSP 2

the log file (OSP.log, unless specified differently in the configuration file) will
contain a message of the form <<Error>>, <<Assertion>>, or <<Warning>>,
which are easy to find with an editor. When OSP 2 terminates, it tells you if
one of these conditions was encountered or if it terminated successfully.

In case of a problem, the best way to understand what might have happened
is to trace back the messages in the system log. For instance, if an error message
says that you are trying to dispatch a thread that is waiting on some event
that has not occurred yet, you should trace back and see when the thread was
suspended on that event and what was the sequence of events that happened
since. You might discover, for example, that your program is placing threads on
the ready queue that, in reality, are not ready to execute. Likewise, if OSP 2

complains that there is a discrepancy between what it perceives to be the
dirty/clean status of a page and the value of the dirty bit set for this page by
the student program, tracing the system log might reveal that, say, this page
has just been swapped in but your program did not reset the dirty bit to false.

OSP 2 generates a log by default, unless tracing is turned off. However,
the log messages thus generated are typically not sufficient by themselves to
debug errors in your code. This is because OSP 2 cannot know what is actually
happening inside student code and it is therefore necessary to put the execution
of your program in the context of the overall execution of OSP 2 . This can be
achieved with the help of the methods in the class MyOut, which were discussed
earlier. Moreover, it is useful to keep in mind that the toString() method of
all major classes in OSP 2 is set up in a printer-friendly manner. For example,
executing

MyOut.print(this,

"The " + thread + " is suspended on " + event);

where thread is an object of class ThreadCB and event is an object of class
Event will produce output that looks like this:

My: 2534.5533 [Threads.ThreadCB] The Thread(15:32/RU)

is suspended on Event(3)

Thus, no special care is needed to produce a readable representation of OSP 2

objects. The header of the OSP 2 system log provides a brief explanation of the
printable representation of various objects. For instance, in the above represen-
tation for a thread, Thread(15:32/RU), the first number (15) is the thread id,
the second (32) is the Id of the task the thread belongs to, and RU is the code
that represents the current status of the thread (ThreadRunning in this case).

Error and warning hooks. In addition to MyOut, the main class of every
student project has the following pair of methods:

1.11 Debugging 33

� public static void atError()

� public static void atWarning()

The first method is called when an error or a condition violation is detected by
OSP 2 , and the second is called right after OSP 2 issues a warning message.
Normally, the bodies of these methods are empty, and this is how you should
leave them when you submit your program. However, during debugging you can
put arbitrary code there. Most useful would be code that prints the status of the
relevant variables in your program. Note that whenever a condition violation,
error, or warning occurs, OSP 2 prints the full stack trace that indicates the
sequence of method calls that led to the problem.

System snapshot. OSP 2 also produces a system snapshot when a con-
dition violation or error occurs. The snapshot conveys the status of memory
allocation, the status of each task and thread in the system, etc. This informa-
tion can be compared with the status of the system per your implementation
and the system log can be consulted to determine where the discrepancy arises.
When OSP 2 prints out a warning, no snapshot is added to the log by default.
This is because warnings tend to come in large numbers and this can lead to
an unmanageably large number of snapshots in the log. However, you can in-
clude the snapshot() method of class MyOut in the body of the atWarning()

method of the main class of your project and produce a snapshot in this way. (It
is recommended to print a snapshot only on the first warning, since subsequent
snapshots are not likely to shed any more light on the problem.)

Execution stack trace. Another important resource for debugging OSP 2
projects is the execution stack trace provided by the Java virtual machine when
a Java exception occurs. Here is an example of such a trace:

java.lang.NullPointerException
at osp.Threads.ThreadCB.do_kill(ThreadCB.java:195)
at osp.IFLModules.IflThreadCB.kill(IflThreadCB.java:634)
at osp.IFLModules.IflThreadCB.killOldThreads(IflThreadCB.java,

Compiled Code)
at osp.IFLModules.CallbackThreadKill.voidCallback(IflThreadCB.java,

Compiled Code)
at osp.EventEngine.EventCallback.Activate(EventCallback.java,

Compiled Code)
at osp.EventEngine.EventEngObj.ActivateChildren(EventEngObj.java,

Compiled Code)
at osp.EventEngine.EventEngObj.Activate(EventEngObj.java,

Compiled Code)
at osp.EventEngine.EventDriver.go(EventDriver.java:114)
at osp.EventEngine.EngineThread.run(EngineThread.java:61)

The trace says that a NullPointerException has occurred in method

34 1. Organization of OSP 2

do kill() of class ThreadCB at source code line 195. Going down the trace,
we can see the sequence of method calls that led to the error: do kill() was
called by kill() of IflThreadCB, etc. The most important information here
is the line number where the error occurred.4

OSP 2 prints a similar trace in the system log when an error or a warning
is issued. For instance,

Sys: 36360 <<Warning!>> [Threads.ThreadCB]

After do_kill(Thread(36:1/KL)): CPU is idle,

but there are ready threads

ready queue = (89:3,115:2,130:2,141:3,142:5)

at osp.IFLModules.IflThreadCB.idleCPUwarning(IflThreadCB.java,

Compiled Code)

at osp.IFLModules.IflThreadCB.kill(IflThreadCB.java, Compiled Code)

at osp.Tasks.TaskCB.do_kill(TaskCB.java, Compiled Code)

at osp.IFLModules.IflTaskCB.kill(IflTaskCB.java, Compiled Code)

at osp.IFLModules.IflTaskCB.killOldTasks(IflTaskCB.java, Compiled Code)

at osp.IFLModules.CallbackTaskKill.voidCallback(IflTaskCB.java,

Compiled Code)

at osp.EventEngine.EventCallback.Activate(EventCallback.java,

Compiled Code)

at osp.EventEngine.EventEngObj.ActivateChildren(EventEngObj.java,

Compiled Code)

at osp.EventEngine.EventEngObj.Activate(EventEngObj.java, Compiled Code)

at osp.EventEngine.EventDriver.go(EventDriver.java:114)

at osp.EventEngine.EngineThread.run(EngineThread.java:61)

The trace appears after the warning message. In this case, we must
look deeper in the trace to find out what happened. The top line of the
trace says that the warning was issued by method idleCPUwarning() of
class IflThreadCB, which was called by kill(), the system wrapper for the
do kill() method, which is part of a student project (refer back to Sec-
tion 1.9.2 for the information about the naming conventions for methods that
are implemented as part of student projects). The trace further says that the
method IflThreadCB.kill() was in turn called by the method do kill() of
class TaskCB, which was called by IflTaskCB.kill(). It takes a little bit of
analysis and understanding of the functionality of the different system calls to
realize what happened: the task Task(1/L) has been destroyed by the system
call TaskCB.kill(), which caused the destruction of all the threads that belong
to that task. In particular, just after thread Thread(36:1/KL) was killed, the
system detected that the CPU was idle even though some ready-to-run threads
were present in the system. Thus, the cause of the warning is most probably
the failure of the student implementation to call the dispatch() method at
the end of do kill().
4 Line-number information is not always provided, unless you run the system using

the debugger.

1.12 Project Submission 35

Obfuscation and stack traces. Unfortunately, the obfuscation that
OSP 2 employs to prevent inappropriate calls to certain methods diminishes
the value of execution stack traces, because the names of some method calls
listed in a trace might be unintelligible. However, even with name obfuscation,
the trace often contains enough information to be useful. Here is an example
of an obfuscated trace:

java.lang.NullPointerException

at osp.IFLModules.IflDevice.enqueueIORB(IflDevice.java:283)

at osp.FileSys.OpenFile.do_read(OpenFile.java:421)

at osp.IFLModules.IflOpenFile.read(IflOpenFile.java:415)
at osp.Memory.PageFaultHandler.a(PageFaultHandler.java:395)

...

In the last line, the real name of the method osp.Memory.PageFaultHandler.a

was obfuscated and became unrecognizable (there is no method called a in the
source code). However, it is still clear that the error occurred while a call to
the method enqueueIORB was made from within the read method, which was
executed on a file.

1.12 Project Submission

The manner by which you submit your OSP 2 projects is determined by the
instructor. The following instructions apply if your instructor chooses to use
the automatic project submission system of OSP 2 .

First, you will have to supply your email address to the instructor, who will
prepare an account for you. The email address identifies you to the system. You
must use the same address in all your interactions with the submission system.

The submission system provides three functions, which are available as links
from the project submission page. The URL of this page will be supplied to
you by your instructor. The functions are as follows:

1. Change of password.
Clicking on this link will let you change your password. Your initial pass-
word will be mailed to you when the instructor sets up your account.

After you change your password and then try to submit a project, you
might see the “authorization has failed” dialog box. This happens when the
browser tries to use your old password. It is not a problem, however, because
clicking “OK” in the dialog box lets you re-enter the correct password.

2. Password reminder.

36 1. Organization of OSP 2

If you forget your password or if you did not receive the initial password
for some reason, you should click on this link. First, you will get email with
a link to a servlet. Clicking on this link will have the following effect:

� Your password will be changed to some random string.

� You will get your new password by email.

If the new password is hard to remember, you can use the “Change of
password” function to change your password.

If you do not click on the aforesaid servlet link, your password will not be
changed. It should be noted that the password-reminder function can be
used only within intervals of at least four hours.

3. Project submission.
When you are ready to submit your project assignment, click on the “Sub-
mit assignment” link on the project submission page. After authentication,
you will be presented with a form where you will be asked to enter the
project name and the *.java files that comprise your program. The system
then copies the sources over to the server and compiles them. If successful,
the sources stay on the server (so that they can be checked by the instruc-
tor and his or her teaching assistants) and the compiled class files are sent
back to your browser as an applet. Next, you will have to run this applet
(by clicking on appropriate buttons). If you are happy with the results,
click on the submission button. The simulation run will then be sent to the
server (again, so that the instructor can check it for errors).

Note that some browsers do not give a warning when a non-existing file
is being sent to the server. In some cases (e.g. when the file is actually a
directory name) the browser might even hang. Therefore, it is important
to make sure that you send the correct *.java files to the server.

You should keep in mind that the instructor might set up the submission
process in such a way that your project would have to be run with several
parameter files. When the first run is finished, you should press the Submit
button and then the Next button. If there are more parameter files to be
considered, a new applet will start. When this is finished, submit the output
and hit Next again. When your project has been run with all the parameter
files, you will receive a confirmation and the main project-submission page
will be displayed.

Finally, some browsers might issue a security exception when you try to
run the submission applet. You will see this exception in the Java console
of the browser (we recommend that you always run the submission applet
with the Java console open). If this happens, you should place the file

1.12 Project Submission 37

.java.policy in your home directory. This file should contain the entry

grant {

permission java.security.AllPermission;

};

2
Putting it All Together: An Example

Session with OSP 2

2.1 Chapter Objective

Your instructor has assigned you the Threads project to implement; see Chap-
ter 4. You are new to OSP 2 . What do you do? In this chapter, we present an
example session with OSP 2 that is intended to give you the guidance and
confidence you need to successfully complete your assignment.

2.2 Overview of Thread Management in OSP 2

The Threads project, as the name implies, deals with thread management
and scheduling, where threads are the executable and dispatchable units in
OSP 2 . Our example will focus on thread management, in particular, the re-
sumption of a thread from a waiting state. This activity is the responsibility of
the method do resume(), one of the methods you are to implement as part of
your implementation of the class ThreadCB.

Thread management involves the notions of thread creation, destruction,
suspension, resumption and dispatching; maintaining thread status; and mov-
ing threads between different (ready and waiting) queues. Underlying all
of this is the notion of a thread state, which can be one of ThreadReady,
ThreadWaiting, ThreadKill, etc.

40 2. Putting it All Together: An Example Session with OSP 2

An OSP 2 thread assumes the ThreadWaiting state when it enters the
pagefault handler or when it executes a blocking system call (e.g., write()).
The ThreadWaiting state is also known as the “level-0 waiting state”. While in
this state, a thread can again enter the pagefault handler or execute a blocking
system call, causing it to enter the level-1 waiting state, represented by the
constant ThreadWaiting+1. This process can continue indefinitely, leading to
arbitrarily nested depths of waiting.

When a thread completes the execution of the pagefault handler or blocking
system call, it should be moved up to the next highest waiting level by decre-
menting its waiting status; in the case of level 0 (ThreadWaiting, it should
transit to the ThreadReady state.

2.3 The Student Method do resume()

As mentioned previously, we will focus our attention during this example session
on the method do resume() of class ThreadCB. Its code is given in Figure 2.1.
Notice the use of the MyOut utility to insert student output in the file OSP.log.
For example, the statement

MyOut.print(this, "Resuming " + this);

will result in output such as

Mod: 63 [Threads.ThreadCB]

Resuming Thread(0:1/W2)

appearing in the log file, indicating that at simulation time 63, thread 0 of
task 1 is at waiting-level 2 (W2). The tag “Mod:” identifies this output as being
from a student module, making it easy for you to distinguish your output from
OSP 2 ’s in the log file.

Do resume() is one of the simplest methods in OSP 2 . All it needs to do
is decrement the thread’s waiting-level, place it on the ready queue if its new
status is ThreadReady, and call dispatch() so that some thread can be dis-
patched onto the CPU for execution.

Assuming that you have completed your design and coding of the Threads

project, let us proceed in a step-by-step fashion with the example session.

2.4 Step 1: Compiling and Running the Project 41

/** Resumes the thread.

Only a thread with status ThreadWaiting or higher can
be resumed. The status must be set to ThreadReady or
decremented, respectively. A ready thread should be

placed on the ready queue.

@OSPProject Threads
*/
public void do_resume()
{

if(getStatus() < ThreadWaiting) {
MyOut.print(this,

"Attempt to resume "
+ this + ", which wasn’t waiting");

return;
}

MyOut.print(this, "Resuming " + this);

// Set thread’s status.
if (getStatus() == ThreadWaiting) {

setStatus(ThreadReady);
} else if (getStatus() > ThreadWaiting)

setStatus(getStatus()-1);

// Put the thread on the ready queue, if appropriate
if (getStatus() == ThreadReady)

readyQueue.append(this);

dispatch();
}

Figure 2.1 Code for student method do resume().

2.4 Step 1: Compiling and Running the Project

� You have a directory with all the necessary files in it for the Threads project:
ThreadCB.java, TimerInterruptHandler.java, OSP.jar, Makefile, etc.

� You have set the environment variable PATH appropriately so that the proper
version of JDK (1.5 or newer) will be invoked.

� On Unix-based systems, you can use the make command to compile the
project. For this example session, we will compile OSP 2 to run without the
GUI by issuing the command:

make runnogui

� Problems in compiling? If you think this could be due to stale .class files,

42 2. Putting it All Together: An Example Session with OSP 2

type make clean and then make to force recompilation of the entire project.

� To now run the project, type:

java -classpath .: osp.OSP -noGUI

2.5 Step 2: Examining the OSP.log File

Assuming for the moment that you have correctly implemented the Threads

project and OSP 2 ran successfully to completion without errors, let us now
take a look at a relevant snippet from the OSP.log file:

Sim: 63 [Memory.PageTableEntry]

Unlocking Page(12:1/0). New lock count: 0

Sim: 63 [Threads.ThreadCB]

Entering resume(Thread(0:1/W2))

Mod: 63 [Threads.ThreadCB]

Resuming Thread(0:1/W2)

Sim: 63 [Threads.ThreadCB]

Leaving resume(Thread(0:1/W1))

Mod: 63 [Hardware.Disk]

Device(0) has no pending IORBs to dequeue

At simulation time 63, thread 0 of task 1 has exited the pagefault handler
and is “resumed” by the student method do resume(). In this case, this means
the thread moves from waiting-level 2 to waiting-level 1.

The log file also contains statistics about tasks and threads generated during
our successful run of the Threads project. It is a good idea to have a look
at these too, both to see how well your implementation is performing and to
simply get a better understanding of how threads behave in OSP 2 .

TASKS and THREADS:

CPU Utilization: 61.382%

Average service time per thread: 36180.812

Average normalized service time per thread: 0.047044374

Total number of tasks: 4

Running thread(s): none

Threads summary: 18 alive

Among live threads: 0 running
6 suspended

0 ready

2.6 Step 3: Introducing an Error into do resume() 43

ready queue = ()

running thread(s) = ()

waiting thread(s) = (97:12,107:13,110:15,111:15,112:15,113:15)

thread(s) in pagefault = (110:15,115:13,124:13)

killed thread(s) = (7:1,15:1,13:1,12:1,10:1,9:1)

2.6 Step 3: Introducing an Error into
do resume()

Unfortunately, not all of your runs of OSP 2 will be as successful as the one
above: we all make programming mistakes, whether they be logical errors or
simply typographical errors. Let us consider what happens when the latter
occurs. In particular, suppose that in do resume(), instead of typing:

} else if (getStatus() > ThreadWaiting)

setStatus(getStatus()-1);

you type:

} else if (getStatus() > ThreadWaiting)

setStatus(getStatus()+1);

This is not an uncommon mistake: typing a plus sign when indeed you
meant to type a minus sign. What are the consequences of this typo? Well, for
one, OSP 2 will terminate unsuccessfully at simulation time 63 and place the
following output in the log file:

Sim: 63

[Threads.ThreadCB]

Entering resume(Thread(0:1/W2))

Mod: 63 [Threads.ThreadCB]

Resuming Thread(0:1/W2)

Sim: 63 <<Error!>> [Threads.ThreadCB]

After do_resume(Thread(0:1/W3)): Thread status is

ThreadWaiting3; should be ThreadWaiting1

at osp.IFLModules.IflThreadCB.resume(IflThreadCB.java:1101)

at osp.IFLModules.Event.notifyThreads(Event.java:130)

at osp.Devices.DiskInterruptHandler.do_handleInterrupt

(DiskInterruptHandler.java:114)

at osp.IFLModules.IflDiskInterruptHandler.handleInterrupt

(IflDiskInterruptHandler.java:107)

44 2. Putting it All Together: An Example Session with OSP 2

at osp.Interrupts.Interrupts.interrupt(Interrupts.java:48)

at osp.Hardware.CPU.interrupt(CPU.java:54)

at osp.IFLModules.IflIORB.voidCallback(IflIORB.java:238)

at osp.IFLModules.CallbackDiskInterrupt.voidCallback

(IflDevice.java:604)

at osp.EventEngine.EventCallback.Activate(EventCallback.

java:48)

at osp.EventEngine.EventDriver.go(EventDriver.java:119)

at osp.EventEngine.EngineThread.run(EngineThread.java:60)

As you can see, the simulator has detected our error! What follows the
error message is a dump of the system-call stack which indicates the sequence
of method calls that led to the problem. Not surprisingly, OSP 2 ’s IFL version
of do resume is at the top of the stack, as it was in this “wrapper method”
where the error was detected. In an actual debugging situation, you would use
this information to isolate and repair the problem in your implementation of
the do resume() method.

To complete our example session, here are the statistics for tasks and threads
that can be found in the log file at the end of our unsuccessful run.

TASKS and THREADS:

CPU Utilization: 28.57143%

Average service time per thread: 63.0
Average normalized service time per thread: 0.28125

Total number of tasks: 1

Running thread(s): none

Threads summary: 1 alive

Among live threads: 0 running

1 suspended

0 ready

ready queue = ()

running thread(s) = ()

waiting thread(s) = (0:1)

thread(s) in pagefault = (0:1)

killed thread(s) = ()

3
Tasks: Management of Tasks (a.k.a.

Processes)

3.1 Chapter Objective

The objective of the Tasks project is to teach students about task manage-
ment in a modern-day operating system and to provide them with a well-
structured programming environment in which to implement task-management
techniques. To this end, students will be asked to implement the OSP 2 class
TaskCB, the only class of package Tasks. TaskCB stands for Task Control Block,
the OSP 2 object used to represent tasks.

3.2 Conceptual Background

Like other modern operating systems, OSP 2 distinguishes between program
execution and resource ownership. The former is captured through the concept
of a thread, which represents a running program, and the latter is captured
using the concept of a task. In older operating systems, like traditional Unix,
the process filled both of these roles; actually, we sometimes use the term
“process” as a synonym for task. In OSP 2 , a task serves as a “container” for
one or more threads, all executing the same code and sharing the same memory
address space. Also associated with a task is a swap file containing an image of

46 3. Tasks: Management of Tasks (a.k.a. Processes)

the task’s address space, other files opened by the task’s constituent threads,
and the communication ports created by these threads. We say that these
resources (memory, ports, files, etc.) are owned by the task and shared by the
task’s threads; this explains how the issue of resource ownership is organized
around the concept of a task.

Threads are the schedulable and dispatchable units of execution in OSP 2 .
They are sometimes referred to as “lightweight processes” for it is much easier
in a multiprogramming OS to switch the CPU from one thread to another than
from one process to another, due to above-explained separation of program ex-
ecution and resource ownership in an OS supporting the task/thread doctrine.
We will have more to say about threads in the next chapter.

A task can be created or destroyed, newly created threads can be added to
a task, and threads are deleted from the owner task’s thread list after they are
destroyed. There is also a system-wide notion of the current task, which is
the task that owns the currently running thread. This thread is known as the
current thread of the task.

In the rest of this chapter we describe TaskCB, the only class in the Tasks

package. The class diagram of Figure 3.1 puts TaskCB in context with related
classes.

3.3 Class TaskCB

Tasks are represented by the class TaskCB, which is the only class to be imple-
mented in the Tasks project. It is defined as follows:

� public class TaskCB extends IflTaskCB

The following methods are to be implemented as part of this project:

� public static void init()

This method is called at the very beginning of simulation and can be used
to initialize static variables of the class, if necessary.

� public static TaskCB do create()

This method creates a new task object and then initializes it properly.

In OSP 2 , creation of a task involves the creation of a task object, allocation
of resources to the task, and various initializations. The task object is created
using the default task constructor TaskCB(). First, a page table must be cre-
ated using the PageTable() constructor, and associated with the task using
the method setPageTable(). Second, a task must keep track of its threads
(objects of type ThreadCB), communication ports (objects of type PortCB),

3.3 Class TaskCB 47

Figure 3.1 Overview of the package Tasks.

and files (objects of type OpenFile), which means that the appropriate struc-
tures have to be created. OSP 2 does not have any specific requirements for
these data structures, except that they must correctly maintain the inventory
of threads, ports, and files attached to the task. Lists or variable-size arrays
are good candidates.

Next, the task-creation time should be set equal to the current

48 3. Tasks: Management of Tasks (a.k.a. Processes)

simulation time (available through the class HClock), the status should be
set to TaskLive, and the task priority should be set to some integer value.
OSP 2 does not prescribe what this value should be; it is determined by the
requirements of the project and might be specified by the instructor (if, for
example, the scheduling strategy implemented in the Threads project uses
task priorities).

The next important step is the creation of the swap file for the task. A swap
file contains the image of the task’s virtual memory space and thus is equal
to the maximal number of bytes in the virtual address space of the task. In
OSP 2 this number is determined by the number of bits needed to specify an
address in the virtual address space of a task, and is obtained using the fol-
lowing method: MMU.getVirtualAddressBits(). The name of the swap file
is, by convention, the same as the task ID number, and the file itself resides
in the directory specified by the global constant SwapDeviceMountPoint. To
create the swap file, you should use the static method create() of class
FileSys. Then the file has to be opened using the static method open() of
OpenFile. The open()method takes a string that represents a full path name
of a file and returns a run-time file handle that is used in the read, write,
and close file operations. The resulting open-file handle should be saved in
the task data structure using the method setSwapFile().

An open() operation can fail due to lack of space on the swap device. In this
case the do create() method of TaskCB should dispatch a new thread and
return null.

A task in OSP 2 must have at least one live thread, so you need to create the
first thread for the task using the static method create() of class Thread-
CB. Finally, the TaskCB object created and initialized by your do create()

method should be returned.1

� public void do kill()

This method is called to destroy a task. First, it should iterate through the
list of all live threads of the task and kill() them. (Recall that maintenance
of this list is entirely the responsibility of your implementation.) Each time
a thread is killed, the do removeThread() method is called by the Threads

package. The do kill() method should then iterate over the ports attached
to the task and destroy() them as well. Each request to destroy a port
will eventually result in a call to your do removePort() method. The status

1 There is no need to invoke the dispatch() method of ThreadCB in order to schedule
a thread to run after the do create() system call is complete. Since a new thread
is created as part of the process of task creation, dispatch() will be called by
the create() method of ThreadCB. However, calling dispatch() before leaving
do create() is harmless.

3.3 Class TaskCB 49

of the task should be set to TaskTerm (terminated task) and the memory
previously allocated to the task should be released. The latter is accomplished
by invoking the method deallocateMemory() of class PageTable on the page
table of the task.

The last resource left to be released by the task is the set of files opened
by the various threads of the task and the swap file of the task. The open
files table of a task is a data structure that should be maintained as part
of the implementation of class TaskCB and should include all files opened by
the threads of the task (which are objects of class OpenFile); OSP 2 does
not prescribe how this should be done. To free up this resource, you must
close() every file in the open files table.

You should keep in mind that each call to close() eventually results in a call
to your method do removeFile(). However, this might not happen immedi-
ately. When you close a file that is the target of an active I/O operation, i.e.,
an operation that is currently being processed by an external device such as
a disk, the file is not closed immediately. Rather, the system will remember
that the file needs to be closed and will re-issue the close() command when
the I/O operation completes. Because of this possible delay, some files of
the task can remain open for a period of time even after you perform the
close() operation on every open file. This means, of course, that calls to
your method do removeFile() might be similarly delayed.

Finally, the swap file of the task must be destroyed using method delete()

of FileSys.2 The argument to this method is the name of the swap file (see
the discussion of do create()).

� public int do getThreadCount()

This method must return a correct thread count, which must be maintained
as part of the implementation of the do create() and do kill() methods.

� public int do addThread(ThreadCB thread)
This method is called by other parts of OSP 2 whenever a new thread is
created. The purpose of these calls is to notify TaskCB of the creation of
a new thread so that the inventory of threads owned by the task can be
properly updated. SUCCESS is to be returned unless the maximum number
of threads for this task has been reached, in which case, FAILURE should be
returned.

� public int do removeThread(ThreadCB thread)
This method is called when a thread is destroyed. The thread should be

2 Closing a file does not deallocate the space; it merely removes the file handle and
flushes the data on disk. Deleting a file removes a hard link to the file, and when
the number of such links becomes zero, the file space is freed.

50 3. Tasks: Management of Tasks (a.k.a. Processes)

removed from the list of threads owned by the task. SUCCESS should be
returned if the thread belongs to the task and FAILURE otherwise.

� public int do getPortCount()

Returns the number of ports owned by the task.

� public int do addPort(PortCB newPort)

This method is called when a new communication port is created by one of
the task’s constituent threads. It enables TaskCB to maintain the inventory
of ports that belong to the task. If the maximum number of ports for this
task has been reached, FAILURE should be returned. Otherwise, SUCCESS is
returned.

� public int do removePort(PortCB oldPort)

This method is called when one of the task’s communication ports is de-
stroyed. The method should remove the port from the list of ports main-
tained by TaskCB. SUCCESS is to be returned if the port belongs to the task;
FAILURE otherwise.

� public void do addFile(OpenFile file)
Adds file to the table of open files of the task. The implementation of
the table is entirely up to the student. This method is typically called
by the method open() of class OpenFile (indirectly, through the wrapper
addFile()).

� public int do removeFile(OpenFile file)

Removes file from the table of open files of the task. This method is typi-
cally called by the method close() of class OpenFile. It returns SUCCESS if
the file belongs to the task; FAILURE otherwise.

Relevant methods and fields defined in this and other packages.
The following public methods and fields of other classes are useful for imple-
menting the methods of the Tasks project.

� public final static float get() HClock

Returns the current simulation time.

� static public int MaxThreadsPerTask ThreadCB

Maximum allowed number of threads per task.

� final static public void dispatch() ThreadCB
Dispatches a new thread.

� public static int MaxPortsPerTask PortCB

Maximum allowed number of ports per task.

3.3 Class TaskCB 51

� final public int destroy() PortCB

Destroys the port on which it is called.

� static public int getVirtualAddressBits() MMU

Returns the number of bits needed to specify a virtual address. Can be used
to determine the size of the swap file.

� final public PageTable getPageTable() TaskCB

Returns the page table of the task.

� final public void deallocateMemory() PageTable

Deallocates (frees) the memory used by the task. Called when a task is
terminated. Is invoked on the task’s page table.

� public PageTable(TaskCB ownerTask) PageTable

Page table constructor (should be used with the new operator). Used to
create a page table object for a newly created task. This object must then
be associated with the task using the setPageTable() method.

� public final static String SwapDeviceMountPoint GlobalVariables

The mount point for the swap device in the file system. It is the name of
the directory where all swap files live, and is terminated with a slash or
a backslash. The name of the task’s swap file is SwapDeviceMountPoint

concatenated with the task ID.
� final public static int create(String name, int size) FileSys

Here name is the full path name of the file and size is the desired initial
size in bytes. The size of a file is assumed to always be a multiple of the
disk block size (which is identical to the virtual memory page/frame size).
This method returns SUCCESS if the file is successfully created and FAILURE
otherwise. A create() operation can fail if, for example, the device does
not have enough space.

� final public static void delete(String name) FileSys
Deletes the file. (See the description of class FileSys for more details about
this method.)

� final public static OpenFile open(String name,TaskCB task)

OpenFile

Opens the file name and returns a file handle for use at run time to read
and write the file.

� final public int close() OpenFile

When invoked on an open file handle, closes the file. Returns SUCCESS if
the file is successfully closed and FAILURE otherwise. A close() operation
might fail, for example, if the file has outstanding I/O operations.

� final static public ThreadCB create(TaskCB task) ThreadCB

Creates an active thread for the task supplied as an argument. Returns the
created thread.

52 3. Tasks: Management of Tasks (a.k.a. Processes)

� final public void kill() ThreadCB

Destroys the thread. Notice that this method calls your implementation of
do removeThread() to disassociate the thread from the task.

Summary of Class TaskCB

The following table summarizes the attributes of class TaskCB and the methods
for manipulating them. These attributes and methods are provided by the class
IflTaskCB and are inherited. The methods appearing in the table are more fully
described in Section 3.4.

Identity: The identity of a task is set by the system, but it can be queried with
the method getID().

Page table: The page table of a task is set with the method setPageTable()
and can be retrieved using getPageTable().

Status: The status of a task is handled using the methods setStatus() and
getStatus().

Priority: The status of a task is handled using the methods setPriority()

and getPriority().

Current thread: Indicates which thread of a task is currently running. The
methods to query and modify this attribute are getCurrentThread() and
setCurrentThread().

Creation time: The creation time of a task is handled using the methods
getCreationTime() and setCreationTime().

Swap file: A task’s swap file is set and retrieved using the methods
getSwapFile() and setSwapFile().

Table of open files: Keeps track of all of the open files of a task, which are
instances of class OpenFile. OSP 2 does not impose any requirements to
how this table is maintained as long as it properly keeps inventory of a
task’s open files. Two methods are used in conjunction with this table:
addFile() and removeFile(). Calls to these methods by other packages
are intended to notify a task as to which files it owns. In addition, when
a task is destroyed, all its files must be closed. This is performed as part
of the do kill() method, which must iterate through this table and close
all the files in it. The do -versions of the addFile() and removeFile()

methods are part of the Tasks project. Note that TaskCB never calls these
methods—it implements them.

3.4 Methods Exported by the Tasks Package 53

Table of ports: Keeps track of all of the communication ports owned by a task.
OSP 2 does not define a specific variable by which to refer to this table,
and the internal data structure used to implement it is entirely up to the
student. However, the following methods are defined to manipulate this
table: getPortCount(), addPort(), and removePort(). The first indicates
how many open ports the task has; the second is used to attach a new port
to the task; and the last is used to remove destroyed ports. The do -versions
of these methods are part of the Tasks project. TaskCB implements these
methods—it never calls them.

Table of live threads: As with ports, OSP 2 does not prescribe how this table is
to be implemented. However, the following methods are defined to manip-
ulate this table: getThreadCount(), addThread(), and removeThread() .
The first method counts the number of live threads owned by the task, the
second adds newly created threads to tasks, and the third method removes
killed threads. The do -versions of these methods are implemented by the
student. These methods are implemented by TaskCB— they are never called
by this class.

3.4 Methods Exported by the Tasks Package

The following is a summary of the public methods defined in the classes of
the Tasks package or in its superclasses. These methods can be used in the
implementation of this or other student packages. To the right of each method
we list the class of the objects to which the method applies. In the case of the
Tasks package, all exported methods belong to a single class, TaskCB, which
inherits them from the superclass IflTaskCB. In general, the public methods
exported by a student package may belong to more than one class; see, for
example, package Memory (Section 5.8).

� final public void setPageTable(PageTable table) TaskCB

Sets the page table of the task.

� final public PageTable getPageTable() TaskCB

Returns the page table of the task.

� final public int getStatus() TaskCB

Returns the status of the task. Allowed values are TaskLive, for live tasks,
and TaskTerm, for terminated tasks.

� final public void setStatus(int s) TaskCB

Sets the status of the task.

54 3. Tasks: Management of Tasks (a.k.a. Processes)

� final public int getPriority() TaskCB

Returns the priority of the task.

� final public void setPriority(int p) TaskCB

Sets the priority of the task.

� public ThreadCB getCurrentThread() TaskCB

Returns the current thread of the task. The current thread is the thread
that will run when the task is made current by the dispatcher.

� public void setCurrentThread(ThreadCB t) TaskCB

Sets the current thread of the task.

� final public int getID() TaskCB

Returns the ID of the task.

� final public double getCreationTime() TaskCB

Returns the task creation time.

� final public void setCreationTime(double time) TaskCB

Sets the task creation time to time.

� public final OpenFile getSwapFile() TaskCB

Returns the swap file of the task.

� public final void setSwapFile(OpenFile file) TaskCB

Sets the swap file of task to file.

� final public int addThread(ThreadCB thread) TaskCB

Adds the specified thread to the list of threads of the given task.

� final public int removeThread(ThreadCB thread) TaskCB

Removes the specified thread from the list of threads of the given task.

� final public int getThreadCount() TaskCB

Returns the number of threads in the task.

� public final void addFile(OpenFile file) TaskCB

Adds file to the table of open files of the task. The implementation of the
table is entirely up to the student.

� public final void removeFile(OpenFile file) TaskCB

Removes file from the table of open files of the task.

� final public int addPort(PortCB newPort) TaskCB

Adds newPort to the list of ports associated with the task.

� final public int removePort(PortCB oldPort) TaskCB

Removes oldPort from the list of ports owned by the task.

3.4 Methods Exported by the Tasks Package 55

� final public int getPortCount() TaskCB

Returns the number of ports owned by the task.

4
Threads: Management and Scheduling

of Threads

4.1 Chapter Objective

Threads are the schedulable and dispatchable units of execution in OSP 2 .
The objective of the Threads project is to teach students about thread man-
agement and scheduling in a modern-day operating system and to provide
them with a well-structured programming environment in which to implement
thread-management and scheduling techniques. To this end, students will be
asked to implement the two public classes of the Threads package: ThreadCB
and TimerInterruptHandler. The former implements the most common op-
erations on a thread, while the latter is a timer interrupt handler that can be
used to implement time-quantum-based scheduling algorithms for threads. We
begin this chapter with an overview of thread basics.

4.2 Overview of Threads

Multi-threading refers to the ability of an OS to support multiple threads of
execution within a single task. There are at least four reasons why it is desirable
to structure applications as multi-threaded ones:

Parallel Processing: A multi-threaded application can process one batch of

58 4. Threads: Management and Scheduling of Threads

data while another is being input from a device. On a multiprocessor archi-
tecture, threads may be able to execute in parallel, leading to more work
getting done in less time.

Program Structuring: Threads represent a modular means of structuring an
application that needs to perform multiple, independent activities.

Interactive Applications: In an interactive application, one thread can be used
to carry out the current command while, at the same time, another thread
prompts the user for the next command. This pipelining effect can lead to
a perceived increase in the speed of the application.

Asynchronous Activity: A thread can be created whose sole job is to schedule
itself to perform periodic backups in support of the main thread of control
in a given application.

Concurrency: Threads can execute concurrently. Thus, for example, a server
process can service a number of clients concurrently: each client request
triggers the creation of a new thread within the server.

We thus see that there is considerable incentive from an application program-
ming perspective for an OS to support multi-threading.

Threads as Independent Entities. As explained in Chapter 3, the re-
sources available to a thread, such as memory, open files and communication
ports, are those belonging to the task to which the thread is affiliated. That
is, a task is a container for one or more threads and each of these threads has
shared access to the resources owned by the task. There is, however, certain
information associated with a thread that allows it to execute as a more or less
independent entity:

� A thread execution state (Running, Ready, Blocked, etc.).

� A saved thread context when not running. This context includes the contents
of the machine registers when it was last running; in particular, every thread
has its own, independent program counter.

� An execution stack.

� A certain amount of per-thread static1 storage for local variables.

� Access to the memory and resources of its container task; it shares these
resources with the other threads in that task.

1 Not to be confused with the Java keyword static used to define a variable as a
class variable or a method as a class method.

4.2 Overview of Threads 59

It is worth taking time to emphasize the implications of this last item. All
the threads of a given task reside in the same address space and have access
to the same data. Consequently, when one thread modifies a piece of data, the
effect of this change is visible to the other threads should they subsequently
decide to read this data item. If one thread opens a file with read access, the
other threads in the same task will also be able to read from this file. It is thus
imperative that when programming a multi-threaded application, the actions
of the threads be carefully coordinated; otherwise conflicts could easily arise
that could hinder the threads from performing their desired computation.

Scheduling Algorithms for Threads. As previously noted, threads are
the schedulable units of execution in OSP 2 and any other OS that supports
threads. This represents a shift from older operating systems like traditional
Unix in which processes played this role.2 Thread scheduling is an integral part
of multiprogramming: when the currently executing thread becomes blocked
waiting for some event to occur, this represents a golden opportunity for the
OS to perform a context switch so that a ready-to-run thread can be given
control of the CPU. In this way, the CPU is kept busy most of the time,
thereby increasing its utilization.

So what are the kinds of events that threads may block on? These include
I/O interrupts and software signals. It should be noted, however, that an OS
can decide to perform a context switch any time it is convenient, again for
the purpose of improving system performance. Convenient in this case means
any time control resides within the OS, and include occasions such as timer
interrupts and system call invocations.

The question you must now ask yourself is which thread should the OS
schedule next when a context switch is to take place? The decision taken here
is critical; it can significantly impact a variety of performance-related measures,
such as:

CPU utilization: the percentage of time the CPU is kept busy (not idle).

Throughput: the number of jobs or tasks processed per unit of time.

Response time: the amount of time needed to process an interactive command.
Typically one is interested in the average response time over all commands.

Turnaround time: The amount of time needed to process a given task. Includes
actual execution time plus time spent waiting for resources, including the
CPU.

2 Modern Unix implementations, like SUN’s Solaris, IBM’s AIX, and Linux, do, of
course, support threads.

60 4. Threads: Management and Scheduling of Threads

The answer to the question as to which thread to schedule next lies in
the CPU scheduling algorithm the OS implements. A variety of scheduling
algorithms have been proposed in the literature and they can be classified along
the following lines:

Emphasis on response time vs. CPU utilization. Algorithms of the former kind
can be thought of as user-oriented and those of the latter kind as system-
oriented.

Preemptive vs. nonpreemptive. A preemptive algorithm may interrupt a thread
and move it to the ready-to-run queue, while in the nonpreemptive case,
a thread continues to execute until it terminates or blocks on some event.
Several preemptive algorithms preempt a thread after it has finished up its
“slice” or quantum of CPU time.

Fair vs. unfair. In a fair algorithm, every thread that requires access to the
CPU eventually gets time on the CPU. In the absence of fairness, starva-
tion is possible and the algorithm is said to be unfair in this case.

Choice of selection function. The selection function determines which thread,
among the ready-to-run threads, is selected next for execution. The choice
can be based on priority, resource requirements, or execution characteristics
of the thread such as the amount of elapsed time since the thread last got
to execute on the CPU.

We now briefly describe some of the more common scheduling algorithms
that have been proposed. In describing these algorithms, we assume the exis-
tence of a ready queue where ready-to-run threads lie in wait for the CPU.

First-Come-First-Served (FCFS) As the name indicates, threads are serviced
in the order they entered the ready queue. This is probably the simplest
scheduling algorithm that has been proposed and has the tendency to favor
long, CPU-intensive threads over short, I/O-bound threads.

Round Robin. Like FCFS but each thread gets to execute for a length of time
known as the time slice or time quantum before it is preempted and
placed back on the ready queue. Time slicing can be used to allow short-
lived threads, corresponding to interactive commands, to get through the
system quickly, thereby improving the system’s response time.

Shortest Thread Next (STN). This is a nonpreemptive policy in which the
thread with the shortest expected processing time is selected next. Like
round robin, it tends to favor I/O-bound threads. The scheduler must have
an estimate of processing time to perform the selection function.

4.3 The Class ThreadCB 61

Shortest Remaining Time (SRT). This is a preemptive version of STN in which
the thread with the shortest expected remaining processing time is selected
next. SRT tends to yield superior turnaround time performance compared
with STN.

Highest Response Ratio Next (HRRN). A nonpreemptive algorithm that
chooses the thread with the highest value of the ratio of R = w+s

s , where R

is called the response ratio, w is the time spent waiting for the CPU, and
s is the expected service time. Favors short threads but also gives priority
to aging threads with high values for w.

Feedback. This algorithm, sometimes referred to as “multi-level round robin”
utilizes a series of queues, each with their own time quantum. Threads enter
the system at the top-level queue. If a thread gains control of the CPU
and exhausts its time quantum, it is demoted to the next lower queue.
The lowest queue implements pure round robin. The selection function
chooses the thread at the head of the highest non-empty queue. Thus this
algorithm penalizes long-running threads since each time they use up their
time quantum, they are demoted to the next lower queue.

Priority-Driven Preemptive Scheduling. The basic idea of this scheme is that
when a thread becomes ready to execute whose priority is higher than the
currently executing thread, the lower-priority thread is preempted and the
processor is given to the higher-priority thread. Thread priorities may be
computed statically (threads have a fixed priority that never changes) or
adjusted dynamically (a thread’s priority begins at some initial assigned
value and then may change, up or down, during the thread’s lifetime). The
priority-driven preemptive approach to thread scheduling is especially im-
portant in operating systems that support real-time threads or processes,
such as Linux, Unix SVR4, and Windows 2000/XP/Vista.

The rest of this chapter describes each class in the package Threads in
detail. These classes are placed in a larger context in the class diagram given
in Figure 4.1.

4.3 The Class ThreadCB

ThreadCB stands for thread control block; it is a class that contains all
the structures necessary for maintaining the information about each particular
thread. This class is defined as follows:

� public class ThreadCB extends IflThreadCB

62 4. Threads: Management and Scheduling of Threads

Figure 4.1 Overview of the package Threads.

Like other classes that belong to student projects, this class defines methods
that start with do_ and that are wrapped with similarly named methods in
class IflThreadCB. Before discussing the required functionality of the methods
in ThreadCB we need to look deeper into the nature of OSP 2 threads.

4.3 The Class ThreadCB 63

Figure 4.2 The state transition diagram for OSP 2 threads.

State transitions. Thread management is concerned with two main issues:
the life cycle of a thread (i.e., creation and destruction of threads) and
maintaining thread status and moving threads between different queues and
CPU (suspension, resumption, and dispatching). Therefore, to understand
thread management in OSP 2 it is important to understand the different states
a thread can be in and how state transitions take place. Figure 4.2 illustrates
this issue.

When a thread is first created, it enters the ready state (ThreadReady),
which means it must be placed on the queue of ready-to-run threads. OSP 2

does not prescribe how this queue is supposed to be organized and it is entirely
up to the student implementation, unless the instructor has specific require-
ments.

From then on, two things can happen: a ready-to-run thread can be sched-
uled to run (and dispatched) and gain control of the CPU (and thus change
its status to ThreadRunning), or it can be destroyed (or killed) and change
its status to ThreadKill.

A thread can be dispatched only if it has the status ThreadReady, but a
live thread (i.e., one that has status other than ThreadKill) can be killed in
any state, not only in the ready state. One sad thing about OSP 2 threads
is that they never die of natural causes: they either get destroyed by some-
body else or self-destroy. In other words, there is no separate system call to

64 4. Threads: Management and Scheduling of Threads

terminate a thread normally and there is no special state to denote normal
thread termination.

A running thread can be preempted and placed back into the ready queue
or it can be suspended to the waiting state. The latter can happen due to
a pagefault or when the thread executes a blocking system call, such as an
I/O operation or a communication (sending or receiving a message). OSP 2

does not place any restrictions on the way the ready queue is implemented, so
you should use your own design. However, your instructor may have specific
requirements to how scheduling is to be done. In this case, some designs might
be much better than others.

An OSP 2 thread can be at several levels of waiting. When a running thread
enters the pagefault handler or when it executes a blocking system call (e.g.,
write()), it enters the level 0 waiting state represented by the integer con-
stant ThreadWaiting. Level 1 waiting state is represented by the constant
ThreadWaiting+1, etc.

A thread is not always blocked when it enters a waiting state. For instance,
when a thread causes a pagefault or executes a write() operation on a file, its
waiting state signifies that in order to continue execution of the user program
the thread needs to wait until the pagefault or the system call is finished. In
other words, the thread switches hats: it leaves the user program and becomes
a system thread. A system thread might do some work needed to process the
request and then it might execute another system call. At this point, it would
enter the waiting state at level 1, which signifies that the original thread has
to wait for two system calls to complete. If the second system call is blocking
(e.g., involves I/O), the execution of the thread will block until the appropriate
event happens (e.g., the I/O completes).

To illustrate this process, consider processing of a pagefault (Chapter 5).
When a pagefault occurs, the thread enters the level 0 waiting state, executes
a page replacement algorithm and then makes a system call to write(). When
the write() call starts execution, the thread’s waiting level is bumped up to
1. After assembling a proper I/O request to the swap device, the thread will
suspend itself on a blocking event, to wait for the I/O. At this point, the thread
will be in state ThreadWaiting+2. When the I/O is finished, the resume()

method is executed on the thread and it drops into the level 1 waiting state.
When the write() system call is about to exit, another resume() is executed
and the thread’s wait level drops to 0 (i.e., its state becomes ThreadWaiting

again). Next, while still in the pagefault handler, the thread would execute the
read() system call and go into the waiting state at levels 1 and 2, similar to
the write() call. When the read() operation is finished, the ensuing resume()

operations will drop the thread to level 0 again. At this point, the pagefault
handler performs some record-keeping operations (see Chapter 5), executes a

4.3 The Class ThreadCB 65

resume() operation and exits. This causes the thread to change its status from
ThreadWaiting to ThreadReady.

In sum, an OSP 2 thread can be suspended to several levels of depth by exe-
cuting a sequence of nested suspend() operations. When all the corresponding
events happen, the resume() method is called on the thread, which decreases
the wait level by 1. When all the events on which the thread is suspended occur,
the thread goes back into the ThreadReady state.

Context switching. Passing control of the CPU from one thread to an-
other is called context switching. This has two distinct phases: preempting
the currently running thread and dispatching another thread. Preempting a
thread involves the following steps:

1. Changing of the state of the currently running thread from ThreadRunning

to whatever is appropriate in the particular case. For instance, if a thread
loses control of the CPU because it has to wait for I/O, then its status might
become ThreadWaiting. If the thread has used up its time quantum, then
the new status should become ThreadReady. Changing the status is done
using the method setStatus() described later.

This step requires knowing the currently running thread. The call MMU.
getPTBR() (described below) lets you find the page table of the currently
scheduled task. The task itself can be obtained by applying the method
getTask() to this page table. The currently running thread is then deter-
mined using the method getCurrentThread().

2. Setting the page table base register (PTBR) to null. PTBR is a reg-
ister of the memory management unit (a piece of hardware that controls
memory access), or MMU, which always points to the page table of the run-
ning thread. This is how MMU knows which page table to use for address
translation. In OSP 2 , PTBR can be accessed using the static methods
getPTBR() and setPTBR() of class MMU.

3. Changing the current thread of the previously running task to null. The
current thread of a task can be set using the method setCurrentThread().

When a thread, t, is selected to run, it must be given control of the CPU. This
is called dispatching a thread and involves a sequence of steps similar to the
steps for preempting threads:

1. The status of t is changed from ThreadReady to ThreadRunning.

2. PTBR is set to point to the page table of the task that owns t. The page
table of a task can be obtained via the method getPageTable(), and the
PTBR is set using the method setPTBR() of class MMU.

66 4. Threads: Management and Scheduling of Threads

3. The current thread of the above task must be set to t using the method
setCurrentThread().

In practice, context switch is performed as part of the dispatch() operation,
and steps 2 and 3 in the first list above can be combined with steps 2 and 3 of
the second list.

In the degenerate case, when the running thread t is suspended and no other
thread takes control of the CPU, consider it as a context switch from t to the
imaginary “null thread”. Likewise, if no process is running and the dispatcher
chooses some ready-to-run thread for execution, you can view it as a context
switch from the null thread to t.

Events. Before going on you must revisit Section 1.6, which describes the
Event class.

The state transition diagram shows that to a large extent thread manage-
ment is driven by two operations: suspend() and resume(). The suspend op-
eration places a thread into a waiting queue of the event passed as an argument
(and increases the wait level) and the resume operation decreases the wait level
and, if appropriate, places it into the queue of ready-to-run threads (in which
all threads are in the ThreadReady state). All this is accomplished using the
Event class discussed in Section 1.6. Note that, as described earlier, a thread
can execute several suspend operations on different events, so it might find itself
in different waiting queues. The thread will be notified about the completion of
these events in the order opposite to that in which the suspend() operations
were performed. After all the relevant events have occurred, the thread is free
to execute again and is placed on the ready queue.

Only the first method in class Event, addThread(), is really necessary for
the Threads project, but other methods might be useful for debugging (and,
of course, they are necessary for other OSP 2 projects).

Methods of class ThreadCB. These are the methods that have to be
implemented as part of the project. Their implementation requires support
from other parts of OSP in the form of the methods that can be called from
within ThreadCB to accomplish a specific objective. We discuss these methods
as part of the required functionality and then give a summary of these methods
in a separate section.

� public static void init()

This method is called once at the beginning of the simulation. You can use it
to set up static variables that are used in your implementation, if necessary.
If you find no use for this feature, leave the body of the method empty.

4.3 The Class ThreadCB 67

� public static ThreadCB do create(TaskCB task)

The job of this method is to create a thread object using the default con-
structor ThreadCB() and associate this newly created thread with a task
(provided as an argument to the do create() method). To link a thread to
its task, the method addThread() of class IflTaskCB should be used and
the thread’s task must be set using the method setTask() of IflThreadCB.

There is a global constant (in IflThreadCB), called MaxThreadsPerTask. If
this number of threads per task is exceeded, no new thread should be created
for that task, and null should be returned. null should also be returned if
addThread() returns FAILURE. You can find out the number of threads a
task currently has by calling the method getThreadCount() on that task.

If priority scheduling needs to be implemented, the do create() method
must correctly assign the thread’s initial priority. The actual value of the
priority depends on the particular scheduling policy used. OSP 2 provides
methods for setting and querying the priority of both tasks and threads.
The methods are setPriority() and getPriority() in classes TaskCB and
ThreadCB, respectively.

Finally, the status of the new thread should be set to ThreadReady and it
should be placed in the ready queue.

If all is well, the thread object created by this method should be returned.

It is important to keep in mind that each time control is transferred to the
operating system, it is seen as an opportunity to schedule a thread to run.
Therefore, regardless of whether the new thread was created successfully, the
dispatcher must be called (or else a warning will be issued).

� public void do kill()

This method destroys threads. To destroy a thread, its status must be set
to ThreadKill and a number of other actions must be performed depending
on the current status of the thread. (The status of a thread can be obtained
via the method getStatus().)

If the thread is ready, then it must be removed from the ready queue. If a
running thread is being destroyed, then it must be removed from controlling
the CPU, as described earlier.

There is nothing special to do if the killed thread has status ThreadWaiting
(at any level). However, you are not done yet. First, the thread being de-
stroyed might have initiated an I/O operation and thus is suspended on the
corresponding IORB. The I/O request might have been enqueued to some
device and has not been processed because the device may be busy with
other work. What should now happen to the IORB? Should you just let the

68 4. Threads: Management and Scheduling of Threads

device work on a request that came from a dead thread?

The answer is that you should cancel the I/O request by removing the cor-
responding IORB from its device queue. This can be done by scanning all
devices in the device table and executing the method cancelPendingIO()

on each device. The device table is an array of size Device.getTableSize()
(starting with device 0), where device i can be obtained with a call to
Device.get().

During the run, threads may acquire and release shared resources that are
needed for the execution. Therefore, when a thread is killed, those resources
must be released into the common pool so that other threads could use them.
This is done using the static method giveupResources() of class Resource-
CB, which accepts the thread be killed as a parameter.

Two things remain to be done now. First, you must dispatch a new thread,
since you should use every interrupt or a system call as an opportunity to
optimize CPU usage. Second, since you have just killed a thread, you must
check if the corresponding task still has any threads left. A task with no
threads is considered dead and must be destroyed with the kill() method
of class TaskCB. To find out the number of threads a task has, use the method
getThreadCount() of TaskCB.

� public void do suspend(Event event)

To suspend a thread, you must first figure out which state to suspend it
to. As can be seen from Figure 4.2, there are two candidates: If the thread
is running, then it is suspended to ThreadWaiting. If it is already waiting,
then the status is incremented by 1. For instance, if the current status of the
thread is ThreadWaiting then it should become ThreadWaiting+1. You now
must set the new thread status using the method setStatus() and place it
on the waiting queue to the event.

If suspend() is called to suspend the running thread, then the thread must
lose control of the CPU. Switching control of the CPU can also be done in the
dispatcher (as part of the context switch), but it has to be done somewhere
to avert an error.

Finally, a new thread must be dispatched using a call to dispatch().

� public void do resume()

A waiting thread can be resumed to a waiting state at a lower level
(e.g., ThreadWaiting+2 to ThreadWaiting+1 to ThreadWaiting or from
ThreadWaiting to the status ThreadReady). If the thread becomes ready,
it should be placed on the ready queue for future scheduling. Finally, a new
thread should be dispatched.

4.3 The Class ThreadCB 69

Note that there is no need to take the resumed thread out of the waiting queue
to any event. A typical sequence of actions that leads to a call to resume() is
as follows: When an event happens, the method notifyThreads() is invoked
on the appropriate Event object. This method examines the waiting queue
of the event, removes the threads blocked on this event one by one, and calls
resume() on each such thread. So, by the time do resume() is called, the
corresponding thread is no longer on the waiting queue of the event.

� public static int do dispatch()

This method is where thread scheduling takes place. Scheduling can be as
simple as plain round-robin or as complex as multi-queue scheduling with
feedback. OSP 2 does not impose any restrictions on how scheduling is to be
done, provided that the following conventions are followed.

First, some thread should be chosen from the ready queue (or the currently
running thread can be allowed to continue). If a new thread is chosen, context
switch must be performed, as described earlier, and SUCCESS returned. If no
ready-to-run thread can be found, FAILURE must be returned.

Relevant methods defined in other packages. Apart from the methods
of the Event class listed above, the following methods of other classes should or
can be used to implement the methods in class ThreadCB as described above:

� final public int getDeviceID() IORB

Returns the device Id number that this I/O request is for.

� final static public Device getDevice(int deviceID) Device

Returns the device object corresponding to the given Id number.

� final static public int getTableSize() Device

Tells how many devices there are. The number is specified in the parameter
file and can vary from one simulation run to another.

� final static public Device get(int deviceID) Device

Returns the device object with the given Id. In conjunction with
getTableSize(), this method can be used in a loop to examine each device
in turn. Note that all devices are mounted by OSP 2 at the beginning of
the simulation and no devices are added or removed during a simulation
run. Therefore the number of devices remains constant and the device table
has no “holes”.

70 4. Threads: Management and Scheduling of Threads

� public void cancelPendingIO(ThreadCB th) Device

The context for this method is a device object, and the method cancels
pending IORBs of the thread th on that device. This is done when th is
killed to prevent the servicing of pending I/O’s requested by killed threads.
However, this method does not cancel the IORB that is currently being
serviced by the device. The device is just allowed to finish.

� final static public PageTable getPTBR() MMU

This method returns the value of the page table base register (PTBR) of the
MMU. PTBR holds a reference to the page table of the currently running
task.

� static public void setPTBR(PageTable table) MMU

This method allows one to set the value of PTBR. When no thread is
running, the value should be null; otherwise, it must be the page table of
the task that owns the currently running thread.

� public final TaskCB getTask() PageTable

Returns the task that owns the page table.

� public void kill() TaskCB

Kills the task on which this method is invoked.

� public int getThreadCount() TaskCB

Tells how many threads the task has.

� public int addThread(ThreadCB thread) TaskCB

Attaches a newly created thread to task. Returns SUCCESS or FAILURE.

� public int removeThread(ThreadCB thread) TaskCB

Removes killed thread to task.

� public ThreadCB getCurrentThread() TaskCB
Returns the current thread object of the task.

� public void setCurrentThread(ThreadCB t) TaskCB

Sets the current thread of the task to the given thread.

� final public int getPriority() TaskCB

Tells the priority of the task.

� final public void setPriority(int p) TaskCB
Sets the priority of the task. The setPriority()/getPriority() meth-
ods are provided for convenience, in case priority scheduling is used and
dispatching takes into account the priority of both the task and the thread.

� final public PageTable getPageTable() TaskCB

Returns the page table of the task.

4.4 The Class TimerInterruptHandler 71

� final public int getStatus() TaskCB

Returns the task’s status.

� set() and get() HTimer

These classes can be used to set and query the hardware timer. See Sec-
tion 1.4 for details.

� get() HClock

This method is described in Section 1.4; it is used to query the hardware
clock of the simulated machine.

� public static void giveupResources(ThreadCB thread) ResourceCB

Releases all abstract shared resources held by the thread. Note: these re-
sources do not include concrete resources such as memory or CPU.

Summary of Class ThreadCB

The following table summarizes the attributes of class ThreadCB and the meth-
ods for manipulating them. These attributes and methods are provided by the
class IflThreadCB and are inherited. The methods appearing in the table are
more fully described in Section 4.5.

Task: The task that owns the thread. This property can be set and queried via
the methods setTask() and getTask().

Identity: The identity of a thread can be obtained using the method getID().
This property is set by the system.

Status: The status of the thread. The relevant methods are setStatus() and
getStatus().

Priority: The priority of the thread. The methods to query and change thread’s
priority are setPriority() and getPriority().

Creation time: The value of this property can be obtained using the method
getCreationTime().

CPU time used: The total CPU time used by the thread can be obtained via
the method getTimeOnCPU().

4.4 The Class TimerInterruptHandler

This class is much simpler than ThreadCB. It is defined as

72 4. Threads: Management and Scheduling of Threads

public class TimerInterruptHandler extends IflTimerInterruptHandler

and contains only one method:

� public void do handleInterrupt()

This method is called by the general interrupt handler when the system
timer expires. The timer interrupt handler is the simplest of all interrupt
handlers in OSP 2 . Its main purpose is to schedule the next thread to run
and, possibly, to set the timer to cause an interrupt again after a certain
time interval. Resetting the times can also be done in the dispatch()

method of ThreadCB instead, because the dispatcher might want to have
full control over CPU time slices allocated to threads.

Relevant methods defined in other packages. The following is a list
of methods that belong to other classes and might be useful for implementing
do handleInterrupt():

� final static public void set(int time) HTimer
Sets the hardware timer to time ticks from now. Cancels the previously set
timer, if any.

� final static public int get() HTimer

Returns the time left to the next timer interrupt.

4.5 Methods Exported by the Threads Package

The following is a summary of the public methods defined in the classes of the
Threads package or in the corresponding superclasses, which can be used to
implement this and other student packages. To the right of each method we
list the class of the objects to which the method applies. In the case of the
Threads package, all exported methods belong to the class TaskCB, which
inherits them from the superclass IflTaskCB.

� final public static ThreadCB create() ThreadCB
This method is a wrapper around the method do create() described in
this chapter. It is provided by IflThreadCB and is inherited by ThreadCB.
Returns the created thread.

� final public static void dispatch() ThreadCB

This is a wrapper around the method do dispatch() described in this
chapter. This method is provided by IflThreadCB and is inherited by
ThreadCB.

� final public void suspend(Event event) ThreadCB

This is a wrapper around the method do suspend() described in this chap-
ter. This method is provided by IflThreadCB and is inherited by ThreadCB.

4.5 Methods Exported by the Threads Package 73

� final public void resume() ThreadCB

This is a wrapper around the method do resume() described in this chap-
ter. This method is defined in IflThreadCB, but it is inherited by ThreadCB.

� final public void kill() ThreadCB

This is a wrapper around the method do kill() described in this chapter.
This method is defined in IflThreadCB, but it is inherited by ThreadCB.

� final public TaskCB getTask() ThreadCB

Returns the task this thread belongs to.

� final public void setTask(TaskCB t) ThreadCB
Sets the task of the thread.

� final public int getStatus() ThreadCB

Returns the status of this thread.

� final public void setStatus(int s) ThreadCB

Sets the status of this thread.

� public double getTimeOnCPU() ThreadCB
Tells the total time the thread has been using CPU.

� final public long getCreationTime() ThreadCB

Returns the creation time of the thread.

� final public int getPriority() ThreadCB

Tells the priority of this thread.

� final public void setPriority(int p) ThreadCB

Sets the priority. The setPriority and getPrioritymethods are provided
for convenience, in case the assignment calls for priority scheduling. OSP 2

does not actually care how priority is used, if at all.

5
Memory: Virtual Memory Management

5.1 Chapter Objective

The objective of project Memory is to teach students about virtual mem-
ory and other modern memory-management techniques and to provide them
with a well-structured programming environment in which to implement these
techniques. To this end, students will be asked to implement the five public
classes of the Memory package. The main class, MMU, represents the memory-
management unit, the piece of hardware that is responsible for memory access
in a computer. The other classes are FrameTableEntry, PageFaultHandler,
PageTableEntry, and PageTable. All of these classes are described in detail
later on in the chapter, each in its own subsection. We begin with an overview
of memory-management basics.

5.2 Overview of Memory Management

In a modern computer, the portion of the circuitry called the memory man-
agement unit (abbr. MMU) is responsible for providing access to main mem-
ory. In OSP 2 , memory access is simulated by calling the method refer() of
the class MMU, which is one of the key methods to be implemented in this project.
It may seem strange at first that you are being asked to implement a piece of
hardware as part of an operating systems programming project. However, the

76 5. Memory: Virtual Memory Management

MMU is the gateway to memory for executing threads, and it provides you
with a golden opportunity to implement the memory-management technique
your Memory assignment calls for.

Memory management and multiprogramming. Modern memory-
management techniques are aimed at supporting multiprogramming and must
therefore allow multiple processes or threads to be memory-resident simulta-
neously. In this way, when the currently executed thread becomes blocked,
e.g. waiting for an I/O request to complete, control of the CPU can be easily
switched to another memory-resident thread, albeit one that is in the ready
state waiting to resume execution.

Partitioning memory. The basic memory-management technique in
support of multiprogramming is to partition main memory into, shall we say,
partitions or chunks of memory that different processes can occupy. Partitions
can be either fixed-size or variable-size. The former results in internal fragmen-
tation, which occurs when a process does not utilize the entirety of a partition.
The latter results in external fragmentation, which occurs when a partition
is too small to be of use to any process. We shall focus the remainder of our
overview of memory-management basics on the fixed-sized partitions utilized
by a technique known as paging. Segmentation is an alternative to paging that
uses variable-size partitions.

Logical memory. The big advance in memory management came with the
realization that the memory allocated to a process need not be contiguous! In
the case of paging, a partition is called a page and a process’s pages collectively
make up its logical address space. Physical memory is divided into page frames,
each the size of a page so the fit of a page in a page frame is exact. Thus, in
theory, a page of a process can be placed in any available page frame. The point
is that the pages of a process’s logical address space may be dispersed noncon-
tiguously among the page frames of main memory. Page sizes typically range
from 512 bytes to 4K bytes but whatever the page size, it is fixed throughout
system execution.

The primary mechanisms used for implementing logical memory are the
page table base register (abbr. PTBR) and the page table. The key is-
sue here is logical address translation, how to convert a logical address into a
physical address, and this is the responsibility of the MMU. A logical address
is just string of bits (e.g. 32 in the case of a 32-bit machine architecture) that
can be logically viewed as consisting of two parts: a page number and a byte
offset into the page. The number of bits taken up by the first part will depend

5.2 Overview of Memory Management 77

on the page size: 9 for a page size of 512 bytes, 10 for a page size of 1K bytes,
etc. The remainder of the address bits are interpreted as the byte offset into
the logical page being addressed.

Every process has a page table of its own and when a thread is dispatched
on the CPU, the address of the page table of the process to which the thread
belongs is placed in the PTBR. The MMU uses the PTBR to find the location
of the page table and uses the page table to supply the mapping between the
logical memory of processes and the main memory of the computer, represented
by the physical page frames. The overall schema is depicted in Figure 5.1.

Page table base register

Control bits Frame
number

Page table

+

Frames of
physical main
memory

Page number (3) Offset (3000)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

5

Control bits

3

6

0

?

?

?

?

Figure 5.1 Logical/Virtual address translation using page tables.

Virtual memory. The simple memory-addressing mechanism just de-
scribed works well as long as the frames corresponding to the pages of a process
are all in main memory. However, as seen in Figure 5.1, some entries in a page
table do not necessarily have to have frames assigned to them. The key insight
behind virtual memory is that a page table can have more entries than the
number of physical page frames, so a one-to-one assignment of frames to pages
might not be possible. In other words, the size of virtual memory can and nor-
mally does exceed that of physical memory. Note that we use the term virtual
memory now instead of logical memory to emphasize the fact that larger-than-
physical-memory address spaces are supported by this scheme.

78 5. Memory: Virtual Memory Management

Pagefaults. The key mechanism for implementing virtual memory is that
each page table entry has a validity bit, which indicates whether the page has
a main-memory frame assigned to it. This bit is checked by the MMU hardware
and whenever a running thread makes a reference to a page whose validity bit
is zero, a pagefault occurs: a special kind of interrupt that is used to notify
the operating system of references to frame-less pages. The intended response
from the OS is to assign a suitable frame to the page. The module responsible
for this action is called the pagefault handler. A page whose validity bit is
one (i.e. has a page frame assigned to it) is said to be valid.

Before examing the steps involved in handling a pagefault, let us first look
more carefully at frame-less pages and their relationship to other resources
owned by processes. If no frame is assigned to a page, where is the program
code or data that the running thread is supposedly referencing? The answer is
that a copy of the entire process space is kept in secondary storage on a swap
device. In high-performance systems, a swap device can be a separate disk, but
typically it is just a partition occupying part of a physical disk. Nevertheless,
the operating system assigns a logical device to each such partition and at
that level the swap device can be viewed as a separate device with its own
characteristics and device number. In particular, in OSP 2 , a swap device is
viewed as a real device with a special device number, SwapDeviceID. Thus,
every process (i.e., OSP task) has a corresponding swap file on the swap
device, which contains an exact image of the process memory.

When a pagefault on page P of task T occurs, the pagefault handler has to
do several things:

1. Suspend the thread that caused the interrupt until the situation that
gave rise to the pagefault is rectified. This is done by creating a new
event, pfEvent, of type SystemEvent and then executing suspend() on
the thread using pfEvent as a parameter. A new system event is created
using the constructor SystemEvent() of class SystemEvent. This event
must be kept around until the end of pagefault processing, as it is needed
to resume the thread before returning from the pagefault handler.

2. Find a suitable frame to assign to page P .
An obvious choice would be a free frame, i.e., a frame that is not assigned
to any other page (of this or any other task). But there might not be such a
frame at the moment (remember that there are fewer frames than pages!).
In this case, page replacement must be performed, as described below.
The result of a successful page-replacement action is that a free frame
becomes available and is assigned to page P .

3. Perform a swap-in.
Once a frame is assigned to the faulty page, you need to make sure that it

5.2 Overview of Memory Management 79

contains the exact image of the page, which is available in the task’s swap
file. To do this, the pagefault handler must initiate a swap-in: a file read
operation that would input the requisite page from the swap device and
store it in the frame.

4. Suspend the pagefault handler.
An I/O operation takes time, so the pagefault handler must suspend itself
until it is woken up by the disk interrupt coming from the swap device.1

Suspension of the pagefault handler actually happens as part of the file read
operation that swaps the page in—you do not need to do this explicitly.

5. Finish up.
Once the image of the right page is copied into the frame, the pagefault
handler should update the page table to make sure that the page entry is
pointing to the right frame, and set the validity bit of the page appropri-
ately. Next, the thread that caused the pagefault should be resumed and
placed on the queue of the ready-to-run threads. This is done by executing
the method notifyThreads() on the event pfEvent, which was created in
Step 1. Finally, as with any other interrupt handler, the dispatcher should
be called to give control of the CPU to some ready-to-run thread.

Page replacement. In describing the actions of the pagefault handler, we
deliberately omitted a saga of its own: What should you do if, in Step 2, the
pagefault handler cannot find a free frame? In this case, it becomes necessary
to choose a frame F ′ occupied by some other page P ′ and use F ′ to satisfy the
pagefault. The page P ′ is often called a victim page and it is said that the
pagefault handler evicts this page from its frame.

The algorithm deployed by the pagefault handler for choosing such a frame
is called the page-replacement algorithm, and the most well-known algorithm of
this kind is LRU (Least Recently Used). LRU replaces the page in memory that
has not been referenced for the longest time. Assuming that threads exhibit
the principle of locality, meaning that they cluster memory references around
a certain subset of their pages over a given window of time, then the LRU
page should be the least likely page to be referenced in the near future and its
replacement is a good bet.

The problem with the LRU policy is that it can be difficult to implement
and for this reason other algorithms have been developed to approximate the
performance of LRU while imposing little overhead. Many of these algorithms
1 Handling disk interrupts is part of another project, module Devices. In the present

project, one should assume that the disk interrupt handler functions according to
the specifications given below.

80 5. Memory: Virtual Memory Management

are variants of a scheme known as the clock policy, which associates one or
more use bits with each frame and organizes the frames as a circular buffer.
Consider for simplicity the case of a single use bit added to each frame. A
frame’s use bit is set to 1 when a page is first loaded in the frame and whenever
the page in the frame is referenced. When it comes time to replace a page, the
clock algorithm scans the buffer looking for a frame with a use bit of zero; the
page occupying the first such frame is chosen for replacement. Each time it
encounters a frame with a use bit of 1, it resets that bit to zero and moves
on to the next frame in the buffer. The use of multiple use bits per frame
increases the algorithm’s precision: the more use bits per frame deployed, the
more closely the algorithm is able to approximate LRU.

From a performance perspective, a good page-replacement algorithm is
characterized by a low pagefault rate. However, as far as the operating sys-
tem is concerned, the only requirement of a page-replacement algorithm is that
there should be no “undesirable side effects”. One such side effect is due to
the nature of the I/O subsystem. Suppose that a page-replacement algorithm
chooses a frame F ′ that is involved in an active I/O operation. In some cases, a
device that started an I/O cannot be stopped. So if you reuse the corresponding
frame for some other purpose then the data in the frame may become corrupted
(in case of a file-read operation) or, in case of a write operation, the data being
written out might become corrupted if you change the content of the frame
before the I/O is finished. Even if the device can be stopped immediately, it
might still not be a good idea because stopping the device now might mean
that the same I/O operation would have to be re-issued later.

Locking and unlocking of frames. How can an OS protect the frames
associated with active I/O operations? A typical mechanism is to keep, for each
frame, a count of the active or outstanding I/O operations that involve that
frame. There are a variety of ways to maintain such a count. Here is an expla-
nation of how it is done in OSP 2 . When an I/O operation is to be performed
on a certain I/O device, an I/O request block (abbr. IORB) is enqueued on the
device’s device queue. An IORB does not refer to frames directly. Instead, it
references the page that is involved in the I/O. The thread that requested the
I/O must perform a lock() operation (which is a method of class PageTable-
Entry) on the page involved. If no frame is assigned to the page, a pagefault
occurs, and the IORB will not be enqueued on the device until the pagefault
processing is over. The lock() operation increments the lock count of the
frame associated with the page and the unlock() operation decrements it. A
page is considered to be locked in a frame if the lock count of the associated
frame is a positive number.

Thus, by the time the IORB makes it to the device queue, the page involved

5.2 Overview of Memory Management 81

is locked and has an associated frame. The page-replacement mechanism is
prohibited from taking frames that have positive lock counts.

Note that a page involved in an I/O is locked into a frame when the cor-
responding IORB is enqueued on the device queue of the device in question (a
device might be busy and have a queue of outstanding I/O’s), not when the
IORB is selected for processing by the device. The reason should be obvious:
To perform an I/O, the page referenced by the IORB must be in some frame in
main memory. If not, it would have to be swapped in. But this requires another
I/O and takes time. So, the selected IORB cannot be processed and the device
would remain idle. In contrast, if pages are locked just before the IORB is en-
queued, the corresponding frames would remain protected for the entire period
while the IORB remains on the device queue (and until the device finishes the
corresponding I/O). If the page being locked is frame-less, a pagefault occurs
and the page is brought in before the IORB is selected for processing.

Dirty frames. Locking is not the only constraint that a page-replacement
mechanism must abide by. Another issue has to do with so-called dirty frames.
A dirty frame is one whose contents has been changed since the last time a
page was swapped into the frame. If such a frame is chosen for replacement,
the current contents of the frame must be saved in the swap file of the task that
owns the page that currently occupies the frame. Otherwise, all changes made to
the page will be lost. Thus, each frame needs another bit, the dirty bit, which
indicates whether the contents of the frame has been changed. The actions that
change the contents of a frame are the memory operation (MemoryWrite) and
the I/O operation read(), which transfers data from a file to main memory.

Thus, we see that finding a victim page and evicting it is no simple mat-
ter: It may require an extra I/O operation to swap-out the victim page and
synchronize its contents with the contents of that page in the swap file.

Frame table. Information about physical, main-memory frames is kept in
the frame table: an array that has one entry per frame. Each entry is an
object of the class FrameTableEntry. In fact, an OSP 2 frame table contains
more information than that. For instance, each frame entry contains a back
reference to the page that occupies that frame (or null). Every frame entry
also has a so-called reference bit, which indicates whether the frame has been
referenced (as the result of executing refer() or due to I/O into or out of the
frame). The reference bit often plays a role (as a use bit) in page-replacement
algorithms.

In real computers, the reference and dirty bits are set in hardware but they
are unset by software using special instructions. In contrast the lock count and

82 5. Memory: Virtual Memory Management

the page reference in the frame table are manipulated entirely in software. In
OSP 2 you have to set and unset all of these items in software. In this sense, part
of what you will do to implement the refer() method is really a simulation of
various hardware functions. This includes setting the dirty and the reference
bits, and also causing the pagefault interrupt itself. We describe these issues in
more detail in Section 5.6.

Reserved frames. In OSP 2 , frames have yet another bit, the reserved
bit. Like the lock count, a reserved bit protects frames from the page-
replacement mechanism, but it is used for a different reason. Suppose a thread
Th causes a pagefault on page P and control is transferred to the pagefault han-
dler after blocking Th. The pagefault handler may go through several distinct
phases:

1. Finding a suitable frame F . Suppose F is dirty and is currently occupied
by page P ′.

2. Evicting P ′ by issuing an I/O operation that swaps P ′ out.

3. Waiting for the I/O to finish.

4. Initiating an I/O to swap page P into frame F .

5. Waiting for the I/O to finish.

6. Putting Th on the ready queue and quitting.

The problem is that while locking will prevent F from being grabbed by other
threads during phases 3 and 5, nothing prevents it from being grabbed to
satisfy other pagefaults between phases 1 and 2, between phases 3 and 5, and
after phase 5. Thus, it might well happen that after trying so hard to assign a
suitable frame to page P , the pagefault handler will find the frame stolen from
under its nose before it gets a chance to assign F to P . To prevent this kind of
unproductive behavior, the pagefault handler must reserve frame F in phase 1
and un-reserve it in phase 6.

Prepaging. Some pagefault handling algorithms perform prepaging, i.e.,
the swapping in of invalid pages that did not cause the pagefault. These al-
gorithms are trying to guess which pages might be referenced by the thread
in the near future and swap them in proactively. To implement prepaging, the
pagefault handler can issue additional read() operations, which might require
write() operations to swap some other pages out.

Prepaging a page is similar to bringing a page in as part of regular page-
fault processing. However, selecting a frame for prepaging should be done with

5.3 Class FrameTableEntry 83

caution. In particular, make sure that it is not the frame that was selected for
the original faulty page. Otherwise, you will end up evicting the page that the
pagefault handler was supposed to make valid!

Since prepaging involves I/O, it is possible that the thread that initiated the
pagefault will be killed by the time prepaging is finished. When this happens,
prepaging should stop. One special case arises when prepaging is done from
within the pagefault handler. The question then is what should be the return
code for do handlePageFault():SUCCESS or FAILURE? OSP 2 expects FAILURE
in this case. In particular, if the page that caused the pagefault became valid
before the thread was killed, the page should be made invalid again prior to
returning from the pagefault handler. However, you should realize that a more
optimized operating system might make a different decision and keep such a
page valid, because it might be used by other threads of the same task.

Proactive page cleaning. Some memory-management algorithms perform
proactive page cleaning by periodically swapping them out on disk (but not
invalidating them). The idea is to utilize the times when the swap device is idle
and reduce the time needed to handle pagefaults by increasing the supply of
clean pages.

Technically, this is done by setting up daemons: special system threads
that are set to wake up periodically, perform the job assigned to them, and go
back to sleep. We discussed the OSP 2 support for daemons in Section 1.7.

In order to set up a cleaning daemon, one creates a class that implements
DaemonInterface (see Section 1.7). The required method unleash() can then
be made to execute the proactive cleaning algorithm. An essential part of this
algorithm is a series of write() operations that write dirty frames out to the
swap device (but keeps these pages valid). This daemon must be registered
with the system at startup, as explained in Section 1.7.

Having surveyed the major issues involved in pagefault handling, we are
now ready to discuss the actual OSP 2 classes and methods that constitute the
Memory module. The class diagrams of Figure 5.2 and Figure 5.3 place these
classes in a larger context.

5.3 Class FrameTableEntry

This class implements the entries in the frame table, the main repository of in-
formation about the status of the main-memory frames. It is defined as follows:

� public class FrameTableEntry extends IflFrameTableEntry

84 5. Memory: Virtual Memory Management

Figure 5.2 Overview of the package Memory, I.

The class constructor is the only method of this class that needs to be imple-
mented as part of the project:

� public FrameTableEntry(int frameID)

Calls super(frameID) and might perform other initializations if the student
implementation defines additional fields in this class.

5.3 Class FrameTableEntry 85

Figure 5.3 Overview of the package Memory, II.

However, this class inherits a number of methods from its superclasses, and
these methods are used by other classes in this project:

� public final int getLockCount()

Returns the lock count of the frame.

� final public void incrementLockCount()

Increments the lock count of the frame by 1.

86 5. Memory: Virtual Memory Management

� final public void decrementLockCount()

Decrements the lock count of the frame by 1.

Summary of Class FrameTableEntry

The following table summarizes the attributes of the class FrameTableEntry

and the methods for setting and querying them. These attributes and methods
are all inherited from class IflFrameTableEntry and are described in more
detail in Section 5.8.

Reserved flag: Indicates if a thread has reserved this frame. The correspond-
ing methods are isReserved(), getReserved(), setReserved(), and
setUnreserved().

Dirty flag: The methods for manipulating the dirtiness of a frame are isDirty()
and setDirty().

Reference flag: Indicates if the frame has been referenced. The methods that
handle this attribute are getreferenced() and setreferenced().

Lock count: This attribute represents the number of times the frame has been
locked minus the number of unlock operations performed on the frame, and
is accessed using the methods getLockCount(), incrementLockCount(),
and decrementLockCount().

Identity: The identity of a frame is its sequence number in the system-wide
array of all main-memory frames. It can be queried using the method
getID().

Page: This is the page that occupies the frame (null, if the frame is free). This
attribute can be set using setPage() and retrieved using getPage().

It should be noted that some information (such as page information and iden-
tity) in the OSP 2 frame table entries is redundant and is not present in the
frame table of a typical operating system. In fact, the OSP 2 frame table can
be seen as a cross between a normal frame table and what is known as an
inverted page table.

5.4 Class PageTableEntry

This class implements the data structure that describes each entry in the page
table. It is defined as follows:

5.4 Class PageTableEntry 87

� public class PageTableEntry extends IflPageTableEntry

For this project, the student must implement the following methods of this
class:

� public int do lock(IORB iorb)

The ultimate goal of this method is to increment the lock count of the frame
associated with the page. However, the details are not as simple as one might
think, because the page might be invalid at the time the lock operation is
performed.

Thus, this method must first check if the page is in main memory by testing
the validity bit of the page (using the method isValid()). If the page is
invalid, a pagefault must be initiated.

To initiate a pagefault, the do lock() method calls the static method
handlePageFault() of class PageFaultHandler, i.e., it calls the pagefault
handler directly, without initiating an interrupt. Note that page locking is
performed as part of an I/O request, when the CPU is already in kernel
mode, so there is no need to cause an interrupt.

We have already seen that page locking involves considerably more than sim-
ply incrementing the lock count. Yet, there is still much more to do. Consider
the following situation. Suppose thread Th1 of task T makes a reference to
page P either via the refer() operation or through locking. If the page is
invalid, a pagefault is initiated. Suppose now that thread Th2 of the same
task comes along and also wants to lock the same page P . Should this cause
a pagefault as well? The answer, of course, is no. The pagefault handler must
already have found a suitable frame for P and the corresponding I/O requests
must already be in the pipeline. Another pagefault would only confuse the
system.

To help identify the pages that are involved in a pagefault, OSP 2 provides
the method getValidatingThread(). When applied to a page, this method
returns the thread that caused a pagefault on that page (or null, if the page
is not involved in a pagefault). In our case, this method would return Th1.

The proper action for Th2 depends on whether Th2 = Th1. If Th2 = Th1,
then the proper action is to return right after incrementing the lock count.2

2 You might be wondering how a thread that caused a pagefault can come back and
request a lock on the page. The answer is simple: The lock can be requested by
the swap-in I/O operation that must be performed as part of pagefault handling.
This swap-in operation is performed on behalf of the same thread that caused the
pagefault, so the locking thread and the validating thread would be one and the
same.

88 5. Memory: Virtual Memory Management

If Th2 �= Th1, then the proper action is to wait until P becomes valid. This
is easy to accomplish because the class PageTableEntry happens to be a
subclass of Event (see Section 4.3 for the description of this class). Thus, we
can execute the suspend() method on Th2 and pass page P as a parameter.

When the page becomes valid (or if the pagefault handler fails to make the
page valid, say, because the original thread, Th1, that caused the pagefault
was killed during the wait), the threads waiting on the page will be un-
blocked by the pagefault handler (which is another class in this project)
and will be able to continue. When such threads become unblocked inside
the do lock() method, control falls through the call to suspend() and the
do lock() method must exit and return the appropriate value: SUCCESS if
the page became valid as a result of the pagefault and FAILURE otherwise.

In general, do lock() returns SUCCESS if the page was locked successfully
(which does not necessarily involve a pagefault) or FAILURE if the page was
not locked. The latter can happen if either the pagefault (which might occur
due to locking) fails or if the thread that created iorbwas killed while waiting
for the lock operation to complete.

Finally, in the case of a successful return, you should remember to increment
the lock count of the frame associated with the page, i.e., to do the actual
locking. (Note that the focus of the previous discussion was on ensuring that
the page is associated with a frame.) Incrementing the lock count of a frame
is accomplished using method incrementLockCount() of class FrameTable-
Entry.

� public void do unlock()

Unlocking is, fortunately, much simpler than locking. All that is needed is
to decrement the lock count via a call to decrementLockCount() of class
FrameTableEntry. Make sure that the lock count does not become negative,
which is a sign of a problem.

Relevant methods defined in other classes. The following is a list of
methods from other classes that can be useful in implementing the methods of
class PageTableEntry:

� public final int getLockCount() FrameTableEntry

Returns the lock count of the frame.

� final public void incrementLockCount() FrameTableEntry

Increments the lock count of the frame by 1.

� final public void decrementLockCount() FrameTableEntry

Decrements the lock count of the frame by 1.

5.4 Class PageTableEntry 89

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page, i.e., the thread that caused
the pagefault on this page. If the page is not in pagefault or its validating
thread was killed before the page became valid, then this method returns
null.
This method is inherited from a superclasses of PageTableEntry.

� final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts the thread
on the waiting queue of event.

� final public int getStatus() TaskCB

Returns the task’s status.

� final public int getStatus() ThreadCB

Returns the status of this thread.

� public final boolean isValid() PageTableEntry

Tells if the page is valid by checking the validity bit.

� public final boolean isReserved() FrameTableEntry

Tests if the frame is reserved.

� public final ThreadCB getThread() IORB

Returns the thread that requested the I/O.

� final public int getDeviceID() IORB

Returns the device involved in the I/O operation.

� final public int getIOType() IORB

Returns the I/O type represented by the IORB. OSP 2 supports two types:
FileRead and FileWrite.

Summary of Class PageTableEntry

The following is a summary of the main attributes of class PageTableEntry

and the methods for manipulating them. See Section 5.8 for a description of
these methods.

Validity flag: The validity flag is handled by the methods isValid() and
setValid().

Frame: If the page is valid, there must be a frame associated with it, which
is described by this attribute. The corresponding methods are getFrame()
and setFrame().

90 5. Memory: Virtual Memory Management

Identity: The identity of a page is its sequence number in the corresponding
page table. It is set automatically by the system and can be queried using
getID().

Owner task: Points to the task that owns the page and is queried using method
getTask() of PageTableEntry. This attribute is not really stored with the
page; it is rather an attribute of the table to which the page belongs. Thus,
this method simply queries the corresponding attribute of the page table.

Validating thread: If the page is currently in pagefault processing, this is the
thread that caused the pagefault. This thread can be obtained using the
method getValidatingThread()and is set using setValidatingThread().

5.5 Class PageTable

The class PageTable represents page tables and is defined as follows:

� public class PageTable extends IflPageTable

The only mandatory method to be implemented here is the class constructor:

� public PageTable(TaskCB ownerTask)

This constructor gets as a parameter the task for which the table is to be
created. It first calls super(ownerTask), as all OSP 2 constructors must
do, and then constructs the page table. The page table is assumed to be
an array of size equal to the maximum number of pages allowed, and is
accessible through the variable pages inherited from the superclass Ifl-

PageTable. The maximal number of pages allowed is calculated using the
method MMU.getPageAddressBits(), which represents the number of bits
dedicated to representing a page number out of the total number of bits in
an address.

After calling super(), the variable pages must be initialized to a new array
of PageTableEntry whose size is determined as described above. Then each
page must be initialized with a suitable PageTableEntry object using the
constructor of that class. Make sure that you use correct page id numbers
and the correct page table in the PageTableEntry constructor when creating
these page objects.

� public void do deallocateMemory()

This method is typically invoked by a terminating task on its page table ob-
ject to unset the various flags for the frames allocated to the task. Specifically,
it uses setPage() to nullify the page field that points to the page that oc-
cupies the frame (thereby freeing the frame), setDirty() to clean the page,

5.6 Class MMU 91

and setReferenced() to unset the reference bit. It also un-reserves each
frame that was reserved by that task. To find out which task has reserved a
given frame, use the method getReserved() of class FrameTableEntry.

Note that this method does not need to (and should not) set the frame
attribute of the deallocated pages to null. It is possible that some of these
pages are being used by ongoing I/O operations that pump data into or out of
the frames that are currently allocated to the killed task. The disk interrupt
handler (which will be called each time an I/O is finished) needs to know
both the frame and the page objects involved in the finished operation, and
it gets the former from the latter.

Note that if a page of a killed task is locked, it can be unlocked only by the
device interrupt handler. Unlocking inside the memory-management module
can lead to inconsistencies. Try to analyze what might happen in this case
in order to understand why this is dangerous.

Summary of Class PageTable

Here is a summary of the attributes and methods of class PageTable. All of
these attributes are provided by class IflPageTable and are inherited from
there.

Page table: This is an array referenced by the variable pages. This array is
created in the PageTable() constructor.

Owner task: Describes the task to which the page table belongs, which can be
obtained via the method getTask().

5.6 Class MMU

This class represents the memory-management unit of the simulated computer,
and defines three methods: the initialization method that exist in every student
module and do refer(), which represents memory references made by the CPU
while executing computer instructions. A detailed explanation is given below.

� public static void init()

This method is called once, at the beginning, to initialize the data structures.
Typically, it is used to initialize the frame table.

Since the total number of frames is known (MMU.getFrameTableSize()),
each frame in the frame table can be initialized in a for-loop. Initially, all

92 5. Memory: Virtual Memory Management

entries in the frame table are just null-objects and must be set to real frame
table objects using the FrameTableEntry() constructor. To set a frame entry,
use the method setFrame() in class MMU.

Another use of the init() method is for the initialization of private static
variables defined in other classes of the Memory package. For example, one
can define an init() method in class PageFaultHandler which would be
able to access any variable defined in that class. Then MMU.init() can call
PageFaultHandler.init(). Since MMU.init() is called at the very begin-
ning of the simulation, PageFaultHandler.init() is also going to be called
at the beginning of the simulation.

� public PageTableEntry do refer(int memoryAddress,

int referenceType,ThreadCB thread)

This method takes an address of a byte in the logical memory of the thread,
a type of the memory reference (MemoryRead, MemoryWrite, or MemoryLock)
and a thread that made the reference. The method then needs to determine
the page of the thread’s logical memory to which the reference was made.
The methods getVirtualAddressBits() and getPageAddressBits(), both
inherited from the superclass IflMMU, can be used to determine the number
of bits allocated to represent the offset within the page. This number can then
be used to compute the page size and then the page to which memoryAddress

belongs.

Next, the method must check if the page is valid (the method isValid()).
If so, you only need to appropriately set the referenced and the dirty bits of
the page, and quit.

If the page is invalid, things are more interesting. There are two possibilities:

1. Some other thread of the same task has already caused a pagefault and
the page is already on its way to main memory.

2. No other thread caused a pagefault on this invalid page.

As before, you can tell one case from the other with the help of the method
getValidatingThread().

In the first case, the thread (that was passed as a parameter to do refer())
should simply suspend itself on the page and wait until the page becomes
valid. When the page eventually becomes valid, the method should set the
referenced and dirty bits appropriately and quit. A thread is suspended by
an invocation of the method suspend() in class ThreadCB. When the page
becomes valid, execution continues past the suspend() statement. Keep in
mind that since a long time may pass between the initial pagefault and the
time the faulty page becomes valid, the simulator might decide to destroy

5.6 Class MMU 93

the waiting thread. In this case, the dirty and referenced bit settings must
not be changed. Thus, always use the getStatus() method to verify that
the thread does not have status ThreadKill.

In the second case, the method must initiate a pagefault. Unlike in the
do lock() method, a pagefault interrupt must be caused. It is not enough
to just invoke the method handlePagefault() because at the time when
the thread executes refer(), the machine is in the user mode executing a
user thread. In contrast, when pagefault is caused by the lock() operation,
the machine must already be in kernel mode, since lock() is called by the
operating system itself.

To cause an interrupt, one must suitably set the various static fields of the
class InterruptVector. This is done using the static methods setPage(),
setReferenceType(), and setThread(). Then one must call the interrupt()
method of class CPU and pass it the the type of the interrupt (i.e., PageFault).
Eventually, this will invoke the method do handlePageFault() in class
PageFaultHandler. Thus, when the interrupt() method returns, the page
will be in the main memory and the thread will be in the ready queue.

Before exiting, do refer() must set the reference and the dirty bits.

In both cases, it must be kept in mind that any thread might get killed while
waiting for completion of I/O. Such is the wicked nature of the simulator. If
a thread is killed, neither the dirty nor the reference bits should be changed.
OSP 2 is checking these conditions vigilantly. The method getStatus()

should be used to determine the status of a thread.

On exit, do refer() must return the referenced page.

Relevant methods defined in other classes. Here is a summary of the
methods defined in other classes, which might be used in the implementation
of the methods of class MMU:

� final static public void setInterruptType(int inter)

InterruptVector
Sets the type of the interrupt in the interrupt vector. The valid values
are PageFault, DiskInterrupt, and TimerInterrupt.

� final static public int getInterruptType() InterruptVector

Extracts the interrupt type from the interrupt vector.

� final static public void setThread(ThreadCB thread)

InterruptVector

Sets the thread field in the interrupt vector so that pagefault handlers
can find out who has caused the interrupt.

94 5. Memory: Virtual Memory Management

� final static public ThreadCB getThread() InterruptVector

Tells which thread has caused the interrupt.

� final static public void setReferenceType(int ref)

InterruptVector

Sets the memory reference type in the interrupt vector. The valid types
are MemoryRead, MemoryWrite, and MemoryLock. Applicable to page-
faults only.

� final static public int getReferenceType() InterruptVector

Tells what the reference type was that caused the interrupt. Applicable
to pagefaults only.

� final public void suspend(Event event) ThreadCB
Suspends the thread on which this method is called and puts the thread
on the waiting queue of event.

� final static public FrameTableEntry getFrame(int frameNumber)

MMU

Returns the frame entry with the given frame number. This method is
defined in the superclass of MMU, and is inherited.

� final static public void setFrame(int index,

FrameTableEntry entry) MMU

Sets the frame with the given index to a non-null FrameTableEntry-
object. This method is defined in the superclass of MMU, and is inherited.

� final static public int getFrameTableSize() MMU

Returns the number of frames in the simulated machine. This method
is defined in the superclass of MMU, and is inherited.

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

� final public void setValidatingThread(ThreadCB thread)

PageTableEntry

Sets the validating thread of the page.

Summary of Class MMU

The memory-management unit defines the hardware characteristics of the sim-
ulated computer. These characteristics and their access methods are described
below.

Frame table: The table whose entries describe the individual main memory
frames in OSP 2 . The methods provided for accessing this table are:
getFrame(), which returns a frame object at a given index in the frame

5.7 Class PageFaultHandler 95

table; setFrame(), which sets a frame table entry with the given index;
getFrameTableSize(), which returns the number of entries in the frame
table (i.e., the number of main-memory frames in the system). These meth-
ods can be used to traverse the frame table in a for-loop.

Number of bits in a virtual address: The number of bits determines the max-
imum addressable space in the simulated computer. For instance, 16 bits
yield 216 bytes of addressable space (64Kb). The method to find out this
value is getVirtualAddressBits().

Number of bits used to represent the offset within pages: This property directly
affects the size of the pages (and frames) in the computer. For instance, 10
bits lead to 1Kb pages, while 12 bits mean that the pages are 4Kb large.
The method to find out this value is getPageAddressBits().

Page table base register: This register points to the page table of the running
task. It is available through the methods getPTBR() and setPTBR().

5.7 Class PageFaultHandler

This class contains only one method that you are required to implement as
part of the project. However, you might want to define additional methods to
make the implementation more modular.

� public static int do handlePageFault(ThreadCB thread,

int referenceType, PageTableEntry page)

This is the actual pagefault handler. The thread and the page arguments
are the thread and the page that caused the pagefault. The referenceType

argument can be MemoryRead, MemoryWrite, or MemoryLock; it represents
the type of memory reference that caused the pagefault. Knowing the type of
memory reference is needed to set the dirty bit correctly. If the pagefault was
caused by locking (in method do lock() of PageTableEntry), the reference
type must be MemoryLock. Note that locking does not modify the contents of
a page, so the page should not be marked dirty due to this type of memory
reference.

The implementation of this method follows the general outline of pagefault
processing described earlier. However, it is also necessary to check several
exception conditions. First, the pagefault handler might be called incorrectly
by the other methods in this project. So, always check if the page that is
passed as a parameter is valid (already has a page frame assigned to it) and
return FAILURE if it is. Second, it is possible that all frames are either locked

96 5. Memory: Virtual Memory Management

or reserved and so it is not possible to find a victim page to evict and free up
a frame. Return NotEnoughMemory if this is the case. Third, the thread that
caused the pagefault can be killed by the simulator at any moment after
the thread goes to sleep waiting for the swap-out or swap-in to complete.
FAILURE should be returned in these cases.

The first two exceptional conditions must be checked at the beginning of
pagefault processing, and the tests for destroyed threads must be done right
after each swap-out and swap-in. In any case, before exiting, all threads that
might be waiting on the page (see the explanations for lock() and refer())
must be notified using the notifyThreads()method of class Event. Finally,
dispatch() must be called.

In case of an exception, you should always think of the appropriate ways to
handle the various bits associated with pages and frames. For instance, if the
thread that caused the pagefault was killed while waiting for a swap-out, we
cannot be sure whether the frame has become clean or not. So, the dirty bit
should not be changed in such a case.

The normal processing of a pagefault goes as follows. First, the thread
must be suspended on a SystemEvent object created with the help of the
SystemEvent() constructor. This event object must be saved in a variable,
because when pagefault handling is finished you must resume the thread by
executing notifyThreads() on that event.

Next, a suitable frame must be found and reserved to protect it from theft
by other invocations of the pagefault handler (on behalf of other threads). If
the frame is free, the page’s frame attribute can be updated and a swap-in
operation can be performed right away. If the frame contains a clean page,
the frame should be freed (explained below) and then a swap-in operation
should be performed. If the frame contains a dirty page, then swap-out must
be performed, followed by freeing the frame, followed by a swap-in. If all is
well and the thread was not killed while waiting for the two I/O operations,
you update the page table (explained below) to indicate that page is now
valid and the frame table to indicate that the newly freed frame is now
occupied by page. Finally, the following actions must be performed:

– the frame used to satisfy the pagefault should be un-reserved

– the threads that might be waiting on page should be notified using
notifyThreads()

– the thread that caused the pagefault must be resumed by executing
notifyThreads() on the system event that you used to suspend the thread
just after the entry into the pagefault handler

5.7 Class PageFaultHandler 97

– dispatch() must be called

– SUCCESS should be returned.

Freeing frames : To free a frame, one should indicate that the frame does not
hold any page (i.e., it holds the null page) using the setPage() method.
The dirty and the reference bits should be set to false.

Updating a page table: To indicate that a page P is no longer valid, one must
set its frame to null (using the setFrame() method) and the validity bit
to false (using the setValid() method). To indicate that the page P has
become valid and is now occupying a main memory frame F , you do the
following:

– use setFrame() to set the frame of P to F

– use setPage() to set F ’s page to P

– set the P ’s validity flag correctly

– set the dirty and reference flags in F appropriately.

Performing a swap-in: This is done by issuing a read command on the swap
file of the task that owns the page.

Performing a swap-out : This is done with the write command on the swap
file of the task that owns the page.3

read() is a method of class OpenFile that is invoked on an OpenFile-object
(which in our case is an open-file handle of a swap file) and takes three
arguments: the block number in the file that is to be read, the page into
which the file block is to be placed, and the thread that initiated the I/O.
All these parameters can be obtained using the methods listed below. The
only peculiarity is that a swap file contains an exact image of the task’s
memory, so there is a one-to-one correspondence between the pages and the
blocks in the swap file. In other words, the block number should be equal to
the page id.

write() is also a method in class OpenFile that is invoked on an open-file
handle and takes the same arguments as read().

Both read() and write() are blocking operations, i.e., they block the exe-
cution of the current thread until the I/O is finished.

Earlier we mentioned the method getValidatingThread(), which can be
used to find out if a particular page is in the middle of a pagefault. It should
3 Note: It must be the task of the page, not of the thread. Indeed, in case of a swap

out, the thread and the page might belong to different tasks. Think why.

98 5. Memory: Virtual Memory Management

be emphasized, however, that it is the responsibility of the pagefault handler
(i.e., your implementation) to maintain the validating threads correctly. In
particular, when a pagefault occurs you must set the validating thread to be
the thread that caused the pagefault and set it to null when the pagefault is
over. All this is done with the help of the method setValidatingThread() of
the class PageTableEntry. It should also be mentioned that OSP 2 monitors
the validating thread field in every page and issues error messages when it is
incorrect. In particular, if a pagefault must occur and the validating thread
of a page stays null, it might complain that your implementation missed the
interrupt.

Relevant methods defined in other classes. In addition to the relevant
methods listed earlier, the following methods are used in handling pagefaults:

� public final boolean isReserved() FrameTableEntry

Tests if the frame is reserved.

� public final boolean isDirty() FrameTableEntry

Tells if the frame is dirty by checking the “dirty” bit of the frame.

� public final void isReferenced() FrameTableEntry

Checks the reference bit and tells if the frame has been referenced.

� public final OpenFile getSwapFile() TaskCB

Returns the open swap file of the task. This swap file is then used in the
read() and write() statements to perform the swap-in and swap-out
operations. The swap file is represented by the OpenFile class, which is
a handle that contains information about the disk blocks used by the file
and some runtime information about the current status of the file. This
operation blocks the current thread until the I/O operation is finished.

� final public void read(int blockNumber,

PageTableEntry memoryPage,ThreadCB thread) OpenFile

This method is invoked on an open-file handle (which is an instance
of class OpenFile). It reads block blockNumber from the file (speci-
fied by an open-file handle) into page memoryPage on behalf of thread.
The open-file handle mentioned above is an object of class OpenFile.
In our concrete case, it would be a handle of a swap file. Since here
read() is used for swapping pages into the memory, blocks in the swap
file must directly correspond to pages in the main memory. Therefore
blockNumber is determined by the ID of memoryPage. This operation
blocks the current thread until the I/O operation is finished.

� final public void write(int blockNumber,

PageTableEntry memoryPage,ThreadCB thread) OpenFile

5.7 Class PageFaultHandler 99

This method is invoked on an open-file handle (which is an instance of
class OpenFile). It writes page memoryPage to block blockNumber of
the file on behalf of thread. As in the case of read(), blockNumber is
determined by the ID of memoryPage.

� public void notifyThreads() Event

Resumes all threads that might be waiting on the event. In pagefault
handling, these are the threads that might be waiting on the page that
has caused a pagefault and is being swapped in.

� final public void suspend(Event event) ThreadCB

Suspends the thread that calls this method, placing it on the waiting
queue of event.

� final static public void dispatch() ThreadCB

Dispatches a thread.

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

� final public void setValidatingThread(ThreadCB thread)

PageTableEntry

Sets the validating thread of the page. Note that you have to make sure
that the validating thread of a page is set correctly by the pagefault
handler. In other words, you must set the page’s validating thread using
setValidatingThread() when a pagefault happens and you must set
it back to null when the pagefault is over.

� final public static int handlePageFault (ThreadCB thread,

int referenceType, PageTableEntry page) PageFaultHandler

Invokes the pagefault handler. Returns SUCCESS if the pagefault has
been handled successfully. Otherwise (for instance, it there is not enough
memory) returns FAILURE.

� public SystemEvent(String name) SystemEvent

Constructor for system events. Used to create an event on which to
suspend a thread at the beginning of pagefault processing. The argu-
ment, name, is a string that will appear in the system log and can help
distinguish this event from other types of SystemEvent.

� static public void create(String name,

DaemonInterface work, int interval) Daemon

Used to register a daemon with the system. See Section 1.7 for details.

In addition most of the methods in class FrameTableEntry (such as getPage(),
setReserved(), etc.) are required for the implementation of the OSP 2 page-
fault handler.

100 5. Memory: Virtual Memory Management

Summary of Class PageFaultHandler

This class does not maintain important data structures of its own. However, it
plays a central role in memory management by initiating the I/O operations
that swap pages in and out of the system and by maintaining the page tables
of the running processes and the frame table of the entire system.

5.8 Methods Exported by Package Memory

The following public methods are defined in the classes of the Memory package.
They are useful for implementing other student modules and are also used to
implement the methods that are part of the current project. To the right of
each method we list the class of the objects to which the method applies.

� static public PageTable getPTBR() MMU

Returns the page table base register of the MMU, which is supposed to
point to the page table of the currently running thread; or it is null if
no thread is running.

� static public void setPTBR(PageTable table) MMU

This method changes the value of the page table base register.

� static public int getVirtualAddressBits() MMU

Returns the number of bits used to represent an address. This method
is defined in IflMMU and is inherited.

� static public int getPageAddressBits() MMU

Returns the number of bits used to represent the page-number portion
of an address. This method is defined in IflMMU and is inherited.

� public final boolean isValid() PageTableEntry

Tells if the page is valid by checking the validity bit.

� public final void setValid(boolean flag) PageTableEntry

Sets the validity bit of the page to flag.

Notice that there is a difference between setting the valid flag and setting
the frame of a page (using setFrame()). The frame is set just before
the swap-in operation so that the I/O subsystem will know which frame
to load the page into. The method setValid() is used only after this
operation is complete.

� public final FrameTableEntry getFrame() PageTableEntry

Returns the frame of the page (or null).

� public final void setFrame(FrameTableEntry frame)

PageTableEntry

5.8 Methods Exported by Package Memory 101

Sets the frame of the page to frame. If the page is being evicted, then
frame is null.
setFrame()must be called before swapping in a page and after the page
becomes invalid. In the former case, you need to set the frame of the
page to tell the I/O subsystem where to put the page. The validity bit
of the page should be set only after the page is loaded.

� public final int getID() PageTableEntry

Returns the ID of the page.

� public final TaskCB getTask() PageTableEntry
Returns the task that owns the page.

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

� final public void setValidatingThread(ThreadCB thread)

PageTableEntry

Sets the validating thread of the page.

� public final void isReferenced() FrameTableEntry
Checks the reference bit and tells if the frame has been referenced.

� public final void setReferenced(boolean flag) FrameTableEntry

Sets the reference bit to the value of flag.

� public final boolean isDirty() FrameTableEntry

Tells if the frame is dirty by checking the “dirty” bit of the
frame.

� public final void setReserved(TaskCB t) FrameTableEntry

Sets the frame as reserved by task t.

� public final TaskCB getReserved() FrameTableEntry

Returns the task that has reserved this frame or null.

� public final void setUnreserved(TaskCB t) FrameTableEntry

Un-reserves the frame previously reserved by task t; error,
if the frame is not reserved by t.

� public final void setDirty(boolean flag) FrameTableEntry

Sets the dirty bit to flag.

� public PageTableEntry pages[] PageTable

This is the array that represents the page table. It must
be initialized by the page table constructor described in
Section 5.5.

� public final TaskCB getTask() PageTable

Returns the owner task of the page table.

6
Devices: Scheduling of Disk Requests

6.1 Chapter Objective

The objective of project Devices is to teach students about device I/O and,
relatedly, certain aspects of device drivers. One main focus will be the schedul-
ing of disk I/O requests. To meet these objectives, students will be asked to
implement the three public classes of the Devices package: Device, IORB, and
DiskInterruptHandler. The class Device deals with the scheduling of I/O
requests, IORB implements the I/O Request Block data structure, and Disk-

InterruptHandler constitutes the interrupt handler for I/O devices.

6.2 Overview of I/O Handling

I/O supervisor and I/O Request Block. When the user thread issues
a read() or write() system call, the OS assembles an input/output re-
quest block (or IORB) and passes the request to the basic I/O supervisor:
the portion of the operating system responsible for managing the various I/O
devices of the system. The IORB includes information about the thread that
issued the call; the buffer page in main memory that contains the data to be
written out or into which the data is to be copied from the secondary storage;
the disk block to which the buffer data is to be written out or which contains
the data to be read in; and the I/O device that is the target of the requested

104 6. Devices: Scheduling of Disk Requests

I/O operation.
The I/O supervisor examines the IORB and places it on the device queue

of the targeted device. A device queue is nothing more than a queue of waiting-
to-be-serviced IORBs, one such queue per I/O device in the system.

Disk interrupt handler. When the device finishes servicing an I/O re-
quest, a device interrupt occurs, which is the way by which external devices
notify the CPU about completion of an I/O operation. The eventual result of
an I/O interrupt is that the appropriate device interrupt handler is called. In
OSP 2 the only external devices are disks, so the only device interrupt handler
is the disk interrupt handler.

A disk interrupt handler performs a variety of functions, which we will
describe in detail in Section 6.5. One of these is to invoke the I/O scheduler,
which chooses the IORB to be serviced next, assuming the device queue is
non-empty; i.e. contains at least one IORB. Once an IORB has been selected,
it is dequeued from the device queue and the device is instructed to process
the request. If the device queue is empty, the device simply idles.

Disk-scheduling algorithms. A variety of disk-scheduling policies have
been proposed for use by the I/O scheduler. Many of these policies are con-
cerned with performance and QoS (Quality of Service) issues related to the
physical characteristics of a disk device. Such a device is typically configured
as a number of platters, each of which has an upper and lower surface on which
data can be magnetically encoded. A surface consists of a number of concentric
tracks each of which is divided into storage regions known as sectors. For most
disk drives, a fixed sector size of 512 bytes is used. The block size of a disk
is the number of bytes transferred in a single I/O operation, and is usually a
multiple of the sector size. The preceding discussion therefore tells us that a
disk address consists of a surface number, track number, and sector number.

Each surface has its own disk arm, at the end of which is a read/write head
that must be positioned over the appropriate track for an I/O operation to
occur. The arms are attached to the disk-drive boom, which moves the arms in
unison back and forth over the tracks of the various surfaces. This gives rise to
the concept of the disk cylinder: the collection of tracks carved out of 3-space
by virtue of having all read/write heads positioned over the same-numbered
track on all surfaces.

Disk I/O can be slow compared with say the time it takes the CPU to
access main memory due to the electromechanical aspects of disk operation. In
particular, having to position the disk arm over the correct track before an I/O
can take place is the biggest culprit. The time taken by this movement is called

6.2 Overview of I/O Handling 105

the seek time and many proposed disk-scheduling strategies seek to minimize
this delay. Rotational delay, the time spent waiting for the proper sector to
circle under the read/write head, is another overhead of disk I/O but of much
less concern to us since it is about an order of magnitude smaller than the seek
time.

Some of the most well-known disk-scheduling algorithms are:

Shortest Seek Time First (SSTF) Services the IORB that requires the least
movement of the disk arm from its current position.

SCAN The arm is moved in one direction only, satisfying all outstanding re-
quests en route until it reaches the last track in that direction. The service
direction is then reversed and the scan proceeds in the opposite direction.

LOOK A variant of SCAN where the service direction is reversed when there
are no more requests in the current service direction (rather than proceed-
ing to the last track).

C-SCAN A variant of SCAN which restricts scanning to one direction only.
When the last track has been visited in that direction, the arm is returned
to the opposite end of the disk and the scan begins again.

C-LOOK The variant of LOOK in which scanning is restricted to one direction,
just as in C-SCAN.

Priority Unlike the above algorithms, this approach is not intended to optimize
disk utilization but rather to meet other system objectives. For example, it
may give priority to IORBs coming from interactive processes rather than
those from computationally intensive batch jobs, with the goal of providing
good interactive response time.

It is important to note that OSP 2 disks do not support the command that
moves the read/write head to a specified cylinder without starting an I/O.
The head moves only when the startIO() command is issued. It is therefore
not possible to implement strategies such as SCAN and LOOK which require
the head to be moved to the first and last cylinders even when there are no
outstanding I/O requests to these cylinders.

Synchronous versus asynchronous I/O. To conclude our discussion of
disk-scheduling strategies, let us consider a relatively new disk-scheduling al-
gorithm that has exhibited superior performance on web-server and file-system
benchmarks. Anticipatory scheduling is useful in the context of synchronous
I/O, where a thread that has issued an I/O operation is blocked until the
I/O completes. In contrast, with asynchronous I/O, a thread initiates an I/O
operation and then can continue processing while the I/O request is fulfilled.

106 6. Devices: Scheduling of Disk Requests

I/O in OSP 2 is of the synchronous variety, although it is possible to simulate
asynchronous I/O in OSP 2 ; see Section 7.7.

Seek-optimizing algorithms can get confused by synchronous I/O since in
this case threads issue one I/O request at a time (after the previous request has
finished). Thus the scheduler may incorrectly assume that the thread issuing
the last I/O request has momentarily no further I/O requests and therefore
selects a request from another thread. This is a bad decision on the part of
the scheduler if the current thread is requesting data sequentially positioned
on the disk which is often the case in practice. Anticipatory scheduling seeks
to mitigate this problem by issuing a short, controlled delay period before
selecting the next IORB to be serviced. This allows the thread that issued the
last request to issue additional requests before the next scheduling decision is
made.

In the rest of this section we provide a detailed description of the classes that
comprise the package Devices. Figure 6.1 places these classes in the overall
context of OSP 2 .

6.3 Class IORB

Before discussing the workings of the I/O supervisor, we need to look more
closely at the structure of an IORB. The class for this data structure is defined
as follows:

� public class IORB extends IflIORB

and its only mandatory method has a six-argument constructor:

� public IORB(ThreadCB thread, PageTableEntry page, int blockNumber,

int deviceID, int ioType, OpenFile openFile)

As usual for OSP 2 class constructors, the first thing this class does is call
super() with the same set of arguments. The rest depends on your imple-
mentation. For instance, if you define additional fields in this class, you can
initialize them in the constructor.

As follows from the argument list, an IORB keeps information about the thread
which issued the request, the buffer page involved, the device and the device’s
block that contains the data to be read in or on which the page is to be
written out, the type of I/O operation (which can be either MemoryRead or
MemoryWrite, two predefined constants in OSP 2), and the open-file handle.
The last of these arguments will be defined in more detail in Chapter 7. For
now it suffices to know that an open-file handle contains runtime information,
such as the file size and the list of blocks allocated to the file, which the OS

6.3 Class IORB 107

Figure 6.1 An overview of the package Devices.

needs in order to process I/O operations on that file. This handle comes from
one of the parameters of the read() or write() system call that created the
IORB in question.

It is important to keep in mind that IORB is also a subclass of Event so
threads can wait on it and be notified. See Section 1.6 to refresh your memory
about OSP 2 events.

108 6. Devices: Scheduling of Disk Requests

Relevant methods defined in other classes. Typically, implementation
of this class does not use methods provided by other OSP 2 classes, since the
only mandatory method in this class is the constructor and the components of
an IORB can be queried via the built-ins provided by OSP 2 itself (see below).

Summary of Class IORB

This class defines the IORB data structure that is used to maintain the infor-
mation about all the active I/O operations. The following API can be used to
query an IORB. All these methods are built-ins that apply to an IORB object
and they return the components of that IORB as described below.

� final public int getID()

Provides the Id of the IORB.

� final public OpenFile getOpenFile()

Returns the open-file handle associated with the IORB.

� final public PageTableEntry getPage()

Returns the buffer page in main memory, which is the source (in the case
of write()) or the target (in the case of read()) of the I/O operation in
question.

� final public int getDeviceID()

Returns the device involved in the I/O operation.

� final public int getIOType()

Returns the I/O type represented by the IORB. OSP 2 supports two types:
FileRead and FileWrite.

� final public ThreadCB getThread()

Returns the thread that requested the I/O.

� final public int getBlockNumber()

Returns the block number of the device, which is the source (in the case of
read()) or the target (in the case of write()) of the I/O.

� public final void setCylinder(int cylinder)

Sets the target disk cylinder for this IORB to cylinder. This is done in
do enqueueIORB() in Device. This method is used by OSP 2 to make sure
that both it and the student module calculate the cylinders associated with
IORBs the same way.

� public final int getCylinder()

Returns the target cylinder associated with this IORB. Since the IORB

6.4 Class Device 109

cylinder is set in do enqueueIORB(), getCylinder() can be used only in
do dequeueIORB().

6.4 Class Device

This class implements the I/O scheduler and performs other functions, such
as starting I/O operations on devices. The following methods are part of the
project and must be implemented by the student.

� public static void init()

This method is called at the very beginning of the simulation and can be
used to initialize static variables that might exist in the student program.

� public Device(int id, int numberOfBlocks)

This is the class constructor. It must call super(id,numberOfBlocks) and
then initialize the device object. One thing that requires initialization is the
variable iorbQueue described later in this section.

� public int do enqueueIORB(IORB iorb)
This method is executed on a device object and puts iorb on the waiting
queue of that device. When programming this method, however, you must
first perform several tasks before the enqueueing. First, you must lock the
page associated with the iorb using the lock() method of class PageTable-
Entry. This is done in order to ensure that the page will not be swapped out
from now till the end of the I/O operation. (If this page is not currently in
main memory, lock() will cause a pagefault, which will eventually bring the
page into main memory.)

Second, you must increment the IORB count of the open-file handle associ-
ated with iorb. This is accomplished using method incrementIORBCount()

of class OpenFile. Because different threads can issue I/O operations con-
currently on the same file, OSP 2 needs to maintain a count of IORBs that
are active for each open-file handle. Knowing the count allows it to ensure
that files cannot be closed before all the outstanding I/O operations have
finished. (Closing a file deallocates its file handle, which can cause havoc
since outstanding IORBs for this file reference the handle.)

Third, you must set the iorb’s cylinder, using method setCylinder(), to
the cylinder that contains the disk block mentioned in the IORB.

You are now ready to enqueue the IORB but not before you check that the
thread that requested the I/O is still alive (using the getStatus() method

110 6. Devices: Scheduling of Disk Requests

of class ThreadCB), i.e., its status is not ThreadKill. If the thread has died,
method do enqueueIORB() should return FAILURE.

If the thread is alive and the device is idle (you can check for idleness by
executing the method isBusy() on the device), you can start the I/O op-
eration immediately using the method startIO() on the device object and
passing it the iorb as a parameter. The method do enqueueIORB() should
then return SUCCESS and exit.

If the device is busy, then put the iorb on the device queue and exit by re-
turning SUCCESS. The device queue is represented by the variable iorbQueue
that can take any object that implements the type GenericQueueInterface
(Section 1.5), as described later in this section.

Disk I/O scheduling is typically implemented as part of this method as the
different scheduling strategies work best with differently structured device
queues. For instance, for the C-SCAN strategy, the IORBs in the queue
might need to be ordered according to the cylinder numbers that contain the
requested disk blocks. In this case, sorting would be best done when IORBs
are enqueued.

� public IORB do dequeueIORB()

This method selects an IORB from the device queue according to some
scheduling strategy, deletes it from the queue, and returns the selected IORB.
If the queue is empty, null is returned.

The I/O scheduling strategy (or parts of it) can also be implemented in this
method, because ultimately it is this method that chooses the requests to
be serviced. OSP 2 does not mandate any particular way of implementing
scheduling.

Note that you should not unlock the page used by the dequeued IORB. This
is because the device has not finished servicing the IORB, so the page must
stay locked. It will eventually be unlocked when the device finishes servicing
the request and the device interrupt occurs.

� public void do cancelPendingIO(ThreadCB thread)

The purpose of this method is to iterate over the device queue removing
all IORBs initiated by thread. The need to do this arises when a thread is
killed. This prevents the device from servicing requests that nobody wants
any more.

For each IORB associated with thread found in the queue, you must unlock
the buffer page used by that IORB. Indeed, when the IORB was enqueued,
the corresponding page was locked. Normally it would be unlocked in the
device interrupt handler after the request is serviced. However, since you

6.4 Class Device 111

are removing the IORB from the device queue, this request will never be
serviced, so you must unlock the page here.

In addition, you must decrement the IORB count of the open-file handle as-
sociated with the IORB. Again, normally this is done in the device interrupt
handler, but because the IORB in question will never be serviced, you must
decrement the count here.

Finally, you should try to close the open-file handle associated with the
IORB. To understand why, let us consider what happens when a thread is
trying to issue a close() system call on a file handle. If the handle does
not have associated IORBs, the file is closed and the handle is deleted. How-
ever, if there are outstanding IORBs for the handle, the system sets the
closePending flag for that handle, but does not close the file in order to
allow the outstanding I/O requests to execute.1 When all such I/O requests
have finished, the file is closed. One of the places where the closePending

flag should be checked is in the do cancelPendingIO() method. Indeed, if
the file was not closed due to outstanding I/O requests and now you are can-
celing all the outstanding IORBs belonging to thread, it is possible that the
file handle has no remaining IORBs, so it can be closed. In other words, when
removing an IORB associated with thread you must check the closePending
flag of the open-file handle of the IORB. If it is set to true and the count of
IORBs for this handle has become 0, the file handle must be closed with the
close() method of OpenFile. To check the current count of pending IORBs
for a file handle use the method getIORBCount() of class OpenFile.

How to compute a cylinder from a block. Many scheduling strategies
require you to compute a cylinder from a given block number. To do this, you
first need to compute the number of blocks in a track.

A track consists of a number of blocks, which in turn consists of a number of
sectors. To find the block size, you can use the functions getVirtualAddress-
Bits() and getPageAddressBits(), since the size of a disk block equals the
size of a main-memory page. The block size together with the sector size
(getBytesPerSector()) gives the number of sectors in a block.

The number of blocks per track can be used to compute the track that
holds the given block. To compute the cylinder number corresponding to the
block you need to know the number of tracks per cylinder. In OSP 2 we assume
1 You may have faced this issue while implementing the kill() method of TaskCB,

which destroys a task. One job that this method is tasked with is closing all open
files owned by the task. You may have experienced the unexpected effect of the
close() system call where some open-file handles stayed around after being closed.
The reason for this was the presence of outstanding IORBs.

112 6. Devices: Scheduling of Disk Requests

that each disk platter is one sided, so the number of tracks in a cylinder equals
the number of platters in the disk. The latter is obtained using the method
getPlatters().

Relevant methods defined in other classes. The following methods
defined in other modules are used by the methods in class Device.

� public final int lock(IORB iorb) PageTableEntry

When executed on a page object, this methods locks that page in main
memory, so it cannot be swapped out.

� public final void unlock() PageTableEntry

Unlocks the page that was previously locked by the lock() method.

� final public void incrementIORBCount() OpenFile

Increments the count of IORBs active for the given file handle.

� final public void decrementIORBCount() OpenFile

Decrements the IORB count for the given file handle.

� final public int getIORBCount() OpenFile

Returns the current IORB count for the open-file handle.

� final public void close() OpenFile

Closes the open-file handle.

� final public int getStatus() ThreadCB

Returns the status of a thread. In this case you need to know when a thread
is killed. The status of a killed thread is ThreadKill.

� static final public int getVirtualAddressBits() MMU

Returns the number of bits used to specify a virtual address.

� static final public int getPageAddressBits() MMU

Returns the number of bits used to specify a page address. From this and the
number of bits in a virtual address one can compute the size of a memory
page (and of a disk block).

� public final void setCylinder(int cylinder) IORB

Sets the cylinder of the IORB to cylinder.

� public final int getCylinder() IORB

Returns the cylinder previously set by setCylinder(). Since the IORB
cylinder is set in do enqueueIORB(), getCylinder() can be used only in
do dequeueIORB().

In addition, the following methods, implemented in class Disk, are available.
These methods can be useful in order to implement certain I/O scheduling

6.4 Class Device 113

strategies. Note that Disk is a subclass of Device. Since the devices we are
dealing with in this project are disks, all these methods are applicable to the
Device objects that occur in this project.

� final public int getHeadPosition()
Returns the head position (the cylinder number where the read/write head
is parked). Cylinders are counted from 0.

� final public int getPlatters()

Returns the number of platters in the disk.

� final public int getTracksPerPlatter()

Tells how many tracks a platter has (or, equivalently, the number of cylinders
on the disk).

� final public int getSectorsPerTrack()

Tells the number of sectors per track.

� final public int getBytesPerSector()

Returns the number of bytes per sector.

� final public int getRevsPerTick()

Returns the number of revolutions of the disk per tick.

� final public int getSeekTimePerCylinder()

Tells how long it takes to seek to the next cylinder.

Summary of Class Device

The following API provided by class Device (implemented in its superclasses)
can be used to obtain information about OSP 2 devices. All the methods and
variables listed apply to Device objects.

� protected GenericQueueInterface iorbQueue

This variable holds the device queue. It is manipulated by the methods
do enqueueIORB() and do dequeueIORB(). The implementation of the de-
vice queue is up to the student module. The only requirement is that the
class of the queue object must implement the interface GenericQueue-

Interface. This interface mandates the methods length(), isEmpty(), and
contains(), as described at the end of Section 1.5. Note that the interface
defines only the methods OSP 2 itself uses internally. For your purposes, your
queue class would need additional methods, such as insertion and deletion
of members of the queue. Note that since these methods are not defined in
GenericQueueInterface you would need to use the cast operator to invoke
them on iorbQueue.

114 6. Devices: Scheduling of Disk Requests

� final public boolean isBusy()

Tests if the device is busy.

� final public void setBusy(boolean flag)

Sets the device busy or idle depending on the value of flag.

� final static public Device get(int deviceID)

Returns the device object with the given device Id.

� final public int getID()

Returns the Id of the device.

� final public void startIO(IORB iorb)

Starts the device and instructs it to perform the I/O operation specified in
iorb. As part of this operation the device becomes busy, so you do not need
to set it to busy explicitly.

� final public String ospDeviceQueue()

This method returns a string that contains the OSP version of the waiting
queue to the device. You can print it out and use it for debugging.

� final public int getTableSize()

Returns the size of the device table.

6.5 Class DiskInterruptHandler

This class is declared as follows:

public class DiskInterruptHandler extends IflDiskInterruptHandler

It has only one method, do handleInterrupt(), which implements the
device interrupt handler. The method has the following signature:

public void do_handleInterrupt()

The following actions need to be performed as part of the handler:

1. Obtain information about the interrupt from the interrupt vector, class
InterruptVector, described in Section 1.4. The main piece of information
is the IORB that caused the interrupt. It is obtained using the method
getEvent() of class InterruptVector (since the IORB is the event that
“caused” the interrupt). The other necessary pieces of information, the
thread, page, open-file handle, etc., are obtained using the API described
in Section 6.3.

6.5 Class DiskInterruptHandler 115

2. The IORB count of the open-file handle associated with the IORB must
be decremented using decrementIORBCount() as described earlier.

3. If the open file has the closePending flag set and the IORB count is 0,
the file might need to be closed. The IORB count of a file handle can be
obtained via the method getIORBCount(). See the relevant part of the
description of the method do cancelPendingIO().

4. The page associated with the IORB must be unlocked, because the I/O
operation (due to which the page was locked) is over.

5. If the I/O operation is not a page swap-in or swap-out, then, unless the
thread that created the IORB is dead, you need to set the frame associated
with the IORB’s page as referenced using the method setReferenced()

of FrameTableEntry. In addition if it was a read operation (I/O type
FileRead) then the frame must be set dirty (using the method setDirty()

of FrameTableEntry). Of course, this can only be done if the task asso-
ciated with the thread is still alive, as otherwise the memory of the task
will be deallocated anyway. The thread’s task is obtained using the method
getTask() and its status is checked using the method getStatus(). A live
task has status TaskLive; otherwise, the status is TaskTerm.

To find out whether an I/O is a swap-in or swap-out from/to the swap
device, one should compare the device Id of the IORB (getDeviceID())
with SwapDeviceID, a constant defined in OSP 2 .

6. If the I/O was directed to the swap device and the task that owns
the thread and the IORB is alive, you should mark the frame as clean
(setDirty(false)).

7. If the task that owns the IORB is dead (status TaskTerm) and the
frame associated with the IORB was reserved by that task (verified using
getReserved()), you must unreserve the frame using setUnreserved().

8. The threads that are waiting on the IORB must be woken up by a call to
notifyThreads().

9. The device must be set to idle using the method setBusy() with the ap-
propriate flag.

10. The device must be told to service a new I/O request. This IORB is picked
up using the method dequeueIORB(). If it returns a non-null object, the
device should be restarted with that IORB using the method startIO().

11. Finally, a new thread must be dispatched using method dispatch() of
ThreadCB.

116 6. Devices: Scheduling of Disk Requests

Relevant methods defined in other classes. The following methods
defined in other modules can be used to implement the disk interrupt handler.

� final static public Event getEvent() InterruptVector
Extracts the event that caused the interrupt (e.g., a page, an IORB).

� final static public ThreadCB getThread() InterruptVector

Returns the thread that caused the interrupt.

� final public void decrementIORBCount() OpenFile

Decrements the count of active IORBs associated with the open-file handle.

� final public int getIORBCount() OpenFile

Returns the current IORB count for the open-file handle.

� public final void setReferenced(boolean flag) FrameTableEntry

Marks frame as referenced.

� public final void setDirty(boolean flag) FrameTableEntry

Marks frame as dirty.

� public final TaskCB getReserved() FrameTableEntry

Marks frame as reserved.

� public final void setUnreserved(TaskCB t) FrameTableEntry

Unreserves frame.

� final public int getDeviceID() IORB

Returns the device associated with the IORB.

� final public ThreadCB getThread() IORB

Returns the thread that issued the I/O request.

� final public PageTableEntry getPage() IORB

Returns the buffer page in main memory that is the source or the target of
the I/O.

� public void notifyThreads() Event
Wakes up threads that are waiting on the event.

� final public void setBusy(boolean flag) Device

If flag is true, marks the device as busy. Otherwise, marks it as idle.

� final public IORB dequeueIORB() Device

Takes an IORB off the device queue and Returns that IORB object.

� final static public void startIO(IORB iorb) Device

Tells the device to start working on iorb.

� final static public void dispatch() ThreadCB

Dispatches a thread to run.

6.6 Methods Exported by Package Devices 117

� final public TaskCB getTask() ThreadCB

Returns the task that owns the thread.

� final public int getStatus() ThreadCB

Tells the status of the thread. See GlobalVariables, Section 1.5, for the
list of legal status codes for a thread.

� final public int getStatus() TaskCB

Tells the status of the task. See GlobalVariables, Section 1.5, for the list
of legal status codes for a task.

Summary of Class DiskInterruptHandler

This class typically does not maintain data structures of its own. However,
since it is intended to process device interrupts, it indirectly manipulates other
data structures, such as IORB’s, threads, and page tables, through the methods
provided by these classes.

6.6 Methods Exported by Package Devices

The package Devices exports the following methods that are used by other
classes in OSP 2 . To the right of each method we indicate the class where the
method is defined.

� final public ThreadCB getThread() IORB
Returns the thread that requested the I/O.

� final public int getTableSize() IORB

Returns the size of the device table.

� final static public Device get(int deviceID) IORB

Returns the device object with the given device Id.

7
FileSys: The File System

7.1 Chapter Objective

The objective of the FileSys project is to teach students about file-system
design and organization and about the management of logical, file-based I/O
in a modern operating system. To this end, students will be asked to imple-
ment the five public classes of the FileSys package: MountTable, which maps
files to physical devices; INode, which keeps track of space allocation to files;
DirectoryEntry, which defines the directory structures; OpenFile, which pro-
vides methods for manipulating open files via open-file handles (including the
read() and write() operations); and FileSys, which provides a set of opera-
tions, such as create() and delete(), on non-open files.

7.2 File System Design Objectives

We briefly consider some of the main design issues in modern file systems,
particularly those pertinent to the FileSys project, and then discuss how these
are addressed in OSP 2 .

Naming. In a modern file system, users are able to refer to a file by a sym-
bolic file name. Typically such a name is in the form of a pathname, a sequence
of directory names ending in a target file, which can also be a directory. For

120 7. FileSys: The File System

example, consider the pathname /home/fac/sas/osp/filesystem.tex. This
pathname starts at the root of the hierarchical file system directory structure
(see discussion of directories below) indicated by the / character. The direc-
tory separator character / is also used to delimit names in the sequence.
The target file in this case is filesystem.tex. OSP 2 supports a hierarchical
directory structure and pathnames for symbolic file naming. Pathnames can
also commence from the working directory such as in osp/filesystem.tex,
assuming the working directory is /home/fac/sas. The working directory can
be manipulated interactively within the command shell.

The process of following the sequence of directory entries along a pathname
to reach the target file is known as pathname dereferencing. Pathname
dereferencing becomes more complicated by the presence of mountable file sys-
tems, discussed below.

Directory structures. Early MS-DOS file systems supported flat file direc-
tory structures where all files resided at the same, single level. Today’s directory
structures are multi-level and hierarchical where directories may contain sub-
directories and so on. Such hierarchies start at the root directory /. This does
not necessarily impose a tree structure on directories as files can be linked to
from any directory, as discussed below.

Links. Modern file systems, Unix-style ones in particular, provide a link()

system call that allows one to create a new link (directory entry) for an existing
file and increment its link count by one. The pathname of the existing file is
given as the argument to link(). If successful, link() returns the pathname
of the new directory entry.

Such a directory entry is a hard link to the existing file, and requires
that both files reside on the same file system (see discussion of mountable file
systems below). Both the old and the new link share equal access and rights to
the underlying object. A hard link can thus be viewed as a pointer to a file and
is indistinguishable from the original directory entry. Any changes to a file are
effective independent of the name used to reference the file. A hard link may
not refer to directories.

A symbolic link is an indirect pointer to a file; its directory entry contains
the name of the file to which it is linked. Symbolic links may span file systems
and may refer to directories.

Mountable file systems. Another feature of modern file systems is
the mount() system call, which requests that a removable file system be
mounted on a specified directory. Subsequent references to this directory

7.3 Overview of the OSP 2 File System 121

will access the root directory (by default) of the mounted file system. The
file system keeps track of mounted file systems and the directories on which
they are mounted via a mount table. For example, suppose the root di-
rectory of a disk volume is mounted on /home/fac/sas. Then the path-
name /home/fac/sas/osp/filesystem.tex ultimately references the target
file named filesystem.tex on that mounted volume. Pathname dereferencing
in the presence of mount tables is discussed more extensively in Section 7.4.

File storage allocation methods. How does the file system keep track
of the disk blocks allocated to a particular file? Possibilities include contiguous
allocation, where a single contiguous set of blocks is allocated to the file at the
time of file creation; chained allocation, where each block allocated to the file
contains a pointer to the next block in the chain; and indexed allocation, which
associates a (multi-level) index structure with the file indicating the blocks
that have been allocated to the file. Indexed allocation addresses many of the
problems of contiguous and chained allocation, and is used in modern operating
systems such as Unix, Windows, and OSP 2 .

Free space management. How does the file system keep track of the
free space on a disk, that is those disk blocks that can be allocated to a file
whenever the need arises? Possibilities include bit tables which use a bit vector
containing one bit for each block on the disk. An entry of 0 corresponds to
a free block and an entry of 1 corresponds to a block in use. In the chaining
method, each free portion of disk space contains a length field and a pointer
to the next free portion in the chain. The indexing approach treats free space
as a file and uses an index table as described under file allocation. The free
block list method numbers each block sequentially and a list of all free blocks
is maintained in a reserved portion of the disk.

7.3 Overview of the OSP 2 File System

The OSP 2 file system is a node-labeled tree, with support for hard links. The
nodes of the tree represent files. The root node of the tree is labeled with the
1-character constant string, FileSys.DirSeparator, which can be “/” or “\”.
In the ensuing discussion, we shall use “/”, but this should not be assumed in
the student programs. The rest of the labels are strings of arbitrary characters
except FileSys.DirSeparator. The labels are called names of files. A full
name or the pathname of a file (or directory) associated with the current

122 7. FileSys: The File System

node is obtained by concatenating all the labels on the path from the root to
that node while separating the different names with FileSys.DirSeparator.

A file can be a plain file or a directory. A directory is a special file that
contains information about other files. These other files are members of the
directory; they correspond to the nodes that are children of the directory node
in the tree. Thus, internal nodes of the file tree can only be directories. The
leaves of the tree can be either plain files or directories. A directory that appears
as a leaf is said to be empty.

Note that directory names that differ only in DirSeparator at the end are
considered the same; i.e., if DirSeparator is “/” and /foo is a directory then
/foo/ is considered to be the same directory. Also, multiple occurrences of
the separator character can be replaced by just one occurrence. For instance,
/foo/bar and ///foo//bar refer to the same file.

A file (or a directory) can be created and deleted. To work with a file,
a thread must first open it and obtain an open-file handle. This handle
contains run-time information about the file. The read and write operations
are performed on the open-file handle rather than on the name of a file. When
a thread is done working with a file, it can close the file handle and thus destroy
it. An open-file handle is a locus of run-time information about the file. In a
typical operating system it includes (among other things) the inode of the file,
the task, and the current position in the file. OSP 2 does not keep the current
position, but it does maintain the rest of this information.

A pathname identifies a unique file, but a file can have any number of names.
In fact, a file is uniquely represented by its inode (index node), which contains
information about the blocks allocated to the file. Pathnames are associated
with inodes through directory entries, but a file’s inode itself contains no
information about the names associated with the file. To associate another
name with a file, a thread can create a hard link to the file, which creates
another association between a pathname and the file’s inode.

Deleting a file does not necessarily destroy the file’s inode. Instead, it de-
stroys the directory entry that associates the inode with a particular pathname
that was used as a parameter to the delete() operation. Each inode has an
associated hard-link count: the number of hard links to the inode, which
is also the number of distinct names associated with the file. When a delete
operation is executed on a pathname associated with a particular inode, the
hard-link count is decremented by one. The inode is deleted only when both
the hard-link count and the open count (described below) become zero.

A file’s inode not only keeps track of the number of hard links to the file,
but also of the file’s open count, the number of times the file has been opened.
The same inode can be open multiple times because the open() operation can
be executed on different names associated with the file (and, in fact, even on

7.4 Class MountTable 123

the same pathname). When this happens, a new open-file handle is allocated,
and the same file can be accessed through different handles. Threads of the
same task share the open-file handles, so typically they do not need to open
the same file multiple times. However, different tasks might want to access the
same file concurrently in which case they need separate file handles. When a
file is opened through one of its pathnames, its open count is incremented by
one. Closing a file (with the close() operation) decrements the open count by
one.

We will now discuss each of the classes that belong to the package FileSys.
Figures 7.1 and 7.2 place them in the larger context of the OSP 2 system.

7.4 Class MountTable

Mount tables associate files with devices. For example, in Windows, a
file named C:\foo\bar is said to be residing on device C and a file named
D:\abc\cde is on device D. A mount table will then associate the letters C and
D with particular physical devices.1

In Unix systems the association between devices and files is more flexible,
but also more complex. First, Unix does not use letters to represent devices.
Instead, devices are associated with directories. A mount table then is a relation
that consists of a list of pairs of the form 〈pathname, deviceID〉. The pathname
part of such a pair is called a mountpoint.

OSP 2 uses Unix-like mount tables. An example mount table is given in
Figure 7.3. In that figure, we see four directories associated with four physical
devices. The first question is: How does the system decide on which device
any given file should reside? For example, consider the file /foo/bar/abc/cde.
Since this file is a descendant of the root directory, /, and this directory is a
mountpoint residing on device 0, one might think that this is where the file
should live. However, this file is also in a subdirectory of mountpoint /foo,
which lives on device 0. Looking more closely, we see that our file is also a
descendant of mountpoint /foo/bar, which is on device 3. Which device is the
correct one?

The actual mapping of files to devices works as follows. Given a full file
name f , the system finds the longest name of a mountpoint d that matches
f , where “matches” means that d is a prefix of f and f is a descendant of
1 Typically a physical device is further subdivided into partitions and the drive

letters (as well as directories in Unix—see below) are associated with partitions. In
other words, partitions represent an intermediate layer between files and the actual
devices they reside on. This intermediate layer does not exist in OSP 2 , and we
will ignore it here.

124 7. FileSys: The File System

Figure 7.1 An overview of the package FileSys, I.

d in the file-tree hierarchy. For example, the longest mountpoint in the table
of Figure 7.3 that matches /foo/bar/abc/cde is /foo/bar and thus the file
/foo/bar/abc/cde resides on device 3. Note that if the mount table had a
pair 〈/foo/bar/ab, 4〉 then the mountpoint /foo/bar/ab would not match
/foo/bar/abc/cde because the latter file does not reside in a subdirectory of

7.4 Class MountTable 125

Figure 7.2 An overview of the package FileSys, II.

/foo/bar/ab (but rather in /foo/bar/abc).2

The MountTable class in OSP 2 is intended to provide the correct mapping
2 Another way to describe the matching criterion is to standardize all file names.

A standardized file name is a full file name such that multiple occurrences of
DirSeparator are replaced with one occurrence and if the file is a directory then
DirSeparator is added at the end of the name. Given a file name f , the matching
mountpoint is the one whose standardized name is the longest prefix of f .

126 7. FileSys: The File System

Directory name Device ID

/foo 0
/swap 2
/foo/bar 3
/ 1

Figure 7.3 A mount table.

of files to devices. The mount table itself is encapsulated in a superclass of
MountTable. What is visible, however, is the static method getMountPoint(),
which takes a device number and returns the corresponding mountpoint. An-
other method, getTableSize(), tells the number of available physical devices
(which can be different for different parameter files). Device numbers range
from 0 to getTableSize()-1. Thus, together these methods make it possible
to access all mountpoints. To provide the file-to-device mapping, the student
needs to implement the following methods of class MountTable:

� public static boolean do isMountPoint(String dirname)

This method tells if dirname is a mountpoint of one of the devices. It uses
the method getMountPoint() internally.

� public static int do getDeviceID(String pathname)

This method checks the mount table and returns the Id of the device that
hosts the file with the given pathname. The method for determining the
device was described earlier.

As you can see, there are no methods for creating or deleting mountpoints.
In OSP 2 all mountpoints are created by the system at startup and none gets
destroyed during the execution of the system.

Built-ins and relevant methods from other classes. The implemen-
tation of these methods might need to use the following methods:

� public static String getMountPoint(int deviceID) MountTable

Returns the mountpoint associated with device deviceID. This method
is an OSP 2 built-in.

� public static int getDeviceID(String pathname) MountTable

Returns the device Id that hosts pathname. Note that this method even-
tually calls your method do getDeviceID() described above. You have
to use getDeviceID() here instead of do getDeviceID() because of
the convention explained in Section 1.9.2 that prohibits student mod-
ules from calling the do methods.

7.5 Class INode 127

� final static public int getTableSize() Device

Tells how many devices there are. The number of devices is specified in
the parameter file and can vary from one simulation run to another.

� final static public Device get(int deviceID) Device

Returns the device object with the given Id. In conjunction with
getTableSize(), this method can be used in a loop to examine each
device in turn, as device IDs range from 0 to getTableSize()-1. Note
that all devices are mounted by OSP 2 at the beginning of the simu-
lation and no devices are added or removed during a simulation run.
Therefore the number of devices remains constant and the device table
has no “holes”.

Summary of the class MountTable

This class maintains the mount table data structure, which maintains the cor-
respondence between devices and directories through which these devices are
accessed by the programs. Other modules of the file system layer access the
mount table mainly using the methods getMountPoint() and getDeviceID().

7.5 Class INode

An OSP 2 inode represents a concrete file. An inode records information about
the device where the file lives, and it keeps track of the blocks occupied by the
file, the hard link count, and the open count.

The most important information here is the set of blocks occupied by the
file. The actual data structure to be used to capture this information is up to
the student implementation, although the course instructor may have specific
requirements for this data structure.

The following methods of class INode are to be implemented as part of the
FileSys project:

� public INode(int deviceID)

The constructor. It should call super(deviceID) and then initialize the in-
stance variables of the inode (if necessary).

� public static boolean do isFreeBlock(int block, int deviceID)

Tells whether block on device with Id deviceID is free.3

3 Note that from an object-oriented design perspective, this method better fits
in class Device. However, space management is not a function of the basic I/O

128 7. FileSys: The File System

� public int do allocateFreeBlock()

When applied to an inode object, allocates a free block to that inode
and returns the block number of that block. Marks the block as used.
Make sure that the INode block count is set correctly (see the method
setBlockCount()). Returns NONE if the device has no free blocks.

� public void do releaseBlocks()

Releases all disk blocks occupied by the inode. Make sure that the INode
block count is set correctly (setBlockCount()).

It is clear from the above that you have to keep track of the free space on
the device. For some representations, such as bitmaps, it is useful to know
the size of each device in blocks. The size can be obtained using the method
getNumberOfBlocks() of the class Device.

Since you have to keep track of the valid inodes, you might also need to
implement the file allocation table (or a master file table) thats hold these
inodes.

Relevant methods defined in other classes.

� final public int getNumberOfBlocks() Device
Returns the total number of blocks on the device.

� final static public int getTableSize() Device

Returns the total number of devices in the device table (i.e., in the
current simulation of the OSP 2 system).

� public final int getBlockCount() INode

Returns the number of blocks allocated to this inode. This method is
inherited from a superclass of INode.

� public final void setBlockCount(int blockCount) INode

Sets the number of blocks allocated to this inode. This method is inher-
ited from a superclass.

� public final int getDeviceID() INode

Returns the device ID of this inode.

� public static String getMountPoint(int deviceID) MountTable

Returns the mountpoint of the given device.

supervisor that Device implements. This is an example of the tension between the
layered architecture of an OS and the object-oriented design.

7.6 Class DirectoryEntry 129

Summary of the class INode

The INode class has methods (implemented as built-ins) and variables which
provide access to the various components of that class, as listed below:

openCount: The count of active open-file handles associated with the inode,
obtained using getOpenCount() and changed via incrementOpenCount()

and decrementOpenCount().

hardLinkCount: The number of pathnames associated with the inode. This
count is obtained via getLinkCount() and changed using the methods
incrementLinkCount() and decrementLinkCount().

blockCount: The number of blocks allocated to the file (the file size). This item
is obtained using getBlockCount() and set using setBlockCount().

device ID: The device Id of the inode. It can be obtained using the method
getDeviceID().

7.6 Class DirectoryEntry

If you were wondering how pathnames are associated with inodes, the suspense
is over: this is done through directory entries defined by the class Directory-
Entry. A directory entry includes a pathname, an inode, and a type (FileEntry
or DirEntry). The type indicates whether the particular directory entry rep-
resents a plain file or a directory.

The methods of this class to be implemented as part of the FileSys project
are listed below.

� public DirectoryEntry(String pathname, int type, INode inode)

The class constructor. Calls super(), as usual, and initializes instance vari-
ables, if necessary.

� public static INode do getINodeOf(String pathname)

Given a pathname, returns the corresponding inode. In order to make this
possible, the class DirectoryEntry must maintain the collection of all direc-
tory entries.

In addition, you need to implement a number of supporting methods that
other classes in your package might need to use to insert directory entries into
the directories, delete the entries, etc.

130 7. FileSys: The File System

Relevant builtins and methods defined in other classes. This
class does not use any standard methods defined in other classes of OSP 2 .
Some standard classes provided by Java itself might be useful. For instance,
Hashtable and the associated methods can be used to maintain the Directory-
Entry data structure. This would closely correspond to how directories are
implemented in real operating systems.

Summary of Class DirectoryEntry

This class does not provide any methods, but there are several variables:

pathname: This property is accessible through the method

final public String getPathname()

This is the pathname represented by this directory entry.

INode: This property is accessible through the method

final public INode getINode()

It is the inode that this directory entry associates with the pathname of
the directory entry. A related method in this class is getINodeOf(), which
takes a pathname parameter and returns the corresponding INode:

final public static INode getINodeOf(String pathname)

Unlike getINode(), this method is static.

type: This property is accessible through the method

final public int getType()

It specifies the type of the directory entry, i.e., whether the entry represents
a regular plain file (FileEntry) or a directory (DirEntry).

7.7 Class OpenFile 131

7.7 Class OpenFile

Class OpenFile provides methods for creating open-file handles, accessing the
components of an open-file handle, and using open-file handles to perform I/O
operations.

� public OpenFile(INode inode, TaskCB task)

This is a constructor for open-file handles. It must call super() with the
same set of parameters and then, possibly, initialize the various variables
that you might have added to the class.

� static public OpenFile do open(String filename, TaskCB task)

This method create an open-file handle. It receives a file name (which must
correspond to a previously created file) and a task object, creates an open-
file handle for the file, and adds the handle to the task’s table of open files.
(Recall from Chapter 3 that the open-files table is one of the resources owned
by a task.)

First, the file must already exist before it can be opened. Existence should be
checked using a method that you implement in class FileSys. Note that this
method will be unknown to the OSP 2 IFL layer, i.e. it will not have a wrap-
per method in the IFL, and therefore its implementation and name are com-
pletely up to you. Second, opening a mountpoint is a violation, so you must
check that the argument is not a mountpoint. (The method isMountPoint()
of class MountTable can be used to check this.)

Once you pass these checks, a new open-file handle can be created. The
OpenFile() constructor takes an inode and a task as parameters, so you must
obtain the inode corresponding to filename (using the method getINodeOf()

discussed earlier). After constructing the handle, you should add it to the
task with the method addFile() of class TaskCB. Finally, the count of open
files for the inode should be incremented (incrementOpenCount()) and the
newly created file handle returned.

� public int do close()

A file is closed when its open-file handle is no longer needed. However, closing
a file is trickier than it might seem.

First, the file might still have outstanding (unprocessed) IORBs. As discussed
in Chapter 6, such a file cannot be closed immediately. Instead, you should
mark the file as needing to be closed later and leave it alone. Marking is
performed by setting the closePending flag to true, where closePending

is a field of the context OpenFile object. The disk interrupt handler will
close the file (by issuing another close operation) after the last outstanding
IORB has been processed.

132 7. FileSys: The File System

If the file cannot be closed due to outstanding IORBs, as described above,
do close() should just exit and return FAILURE. If the file can be closed
immediately, then you should do so, adjusting the relevant structures. One
thing that needs to be done here is to decrement the open file count of
the inode associated with the file handle. The inode is obtained using the
getINode() method and the count is changed using decrementOpenCount()

of class INode.

Next, you should check whether you can destroy the inode associated with the
file handle and release the disk blocks owned by that inode. As discussed ear-
lier, an inode can be deleted when both its open file count (getOpenCount())
and its hard-link count (getLinkCount()) are zero. The inode’s disk blocks
are released with the method releaseBlocks() of class INode. The method
to remove an inode from the disk master file table should reside in class
INode and its name (and, of course, its implementation) are left for you to
decide.

Finally, the closePending field is reset to false, the file handle is removed
from the open-files table of the task associated with that handle, and SUCCESS

is returned.

� public int do read(int fileBlockNumber,

PageTableEntry memoryPage, ThreadCB thread)

The do read() method is executed on a file-handle object. It creates a read
request to the device associated with the file handle, enqueues the request to
the device, and waits until the I/O is complete — I/O operations in OSP 2

are synchronous at the thread level. That is, the thread that issues an I/O
operation is eventually blocked until the operation is finished.4

It is recommended that you make sure that the parameters passed to open()

are consistent. For example, the fileBlockNumber parameter must be within
the appropriate range (non-negative and not exceed the file size). If it is not,
FAILURE should be returned. Likewise, it is wise to check whether memoryPage
and thread are not null.

In the next step, a new system event is created using the constructor
SystemEvent() and the current thread is suspended on that event. At this
point it is recommended that you refresh your memory about thread suspen-
sion and resumption by (re-)reading Section 4.3. A thread that is suspended
on a system event is not really blocked, but instead can be thought of as

4 However, I/O is asynchronous at the task level: a thread that does not wish to
wait for I/O can spawn another thread that performs the I/O. Meanwhile, the first
thread can go about its business while the second thread would wait. When the
I/O is done, the two threads can merge.

7.7 Class OpenFile 133

having changed status from user thread to system thread. When the read op-
eration is complete, the event will “happen” and the thread will be resumed.
To be able to resume the thread after the I/O is complete, you should save
the SystemEvent object in a variable.

You are now ready to construct an IORB for the request. The inode and
device Id can be extracted from the open-file handle using the appropriate
methods. The I/O type (one of the parameters in the IORB constructor)
is, naturally, FileRead. The only thing that requires care is the disk block
number parameter to the constructor.

Note that the fileBlockNumber parameter to do read() is the number of
the logical block within a file. It must be mapped to the physical block of
the disk. Information about the disk blocks allocated to the file is stored in
the inode, which is implemented in your INode class. It is recommended that
you implement a method in INode that, when applied to an inode with a
logical file block number as a parameter, returns the corresponding physical
block.

After collecting all the needed components, you use the IORB() constructor
to create an IORB for the read request.

Next, you must enqueue the request to the appropriate device using the
method enqueueIORB() of class Device. Note that enqueueIORB() locks the
target memory buffer page, which can cause some swapping activity, and the
thread must wait until swapping is finished. As usual in OSP 2 , a waiting
thread might get killed, so it is necessary to ascertain that the thread is
still alive after enqueueIORB() returns. If the thread was killed, do read()

should return FAILURE.

If enqueueIORB() finished successfully, thread must be suspended on iorb.
When this I/O completes, thread will be notified and control will get past
the suspend() operation. At this point, again, you must check if the thread
is still alive. If it is dead, FAILURE is returned; if it is alive, you execute
notifyThreads() on the previously created SystemEvent object and return
SUCCESS.5

� public int do write(int fileBlockNumber,

PageTableEntry memoryPage, ThreadCB thread)

Writing is similar to reading in many respects. One important difference (in
OSP 2 , anyway) is that a file block is considered out of range only if it is

5 Note that the logic of your implementation should be such that each suspend()
is matched by a notifyThreads() system call.

134 7. FileSys: The File System

negative. If fileBlockNumber is higher than the number of blocks in the file,
the file is extended with the necessary number of blocks. For example, if the
current size of the file is 2 blocks and fileBlockNumber is 5, then 4 new
blocks must be allocated to the file. (Note that blocks are counted from 0,
so 5 refers to the 6th block of the file.) Additional disk blocks are allocated
to an inode as a result of the allocateFreeBlock() system call (and not by
any other means !).

Another important difference is that the device might not have enough free
space to accommodate the file expansion. In this case, FAILURE should be
returned. Note that free disk space management is done in class INode and
is the student’s responsibility.

Relevant methods defined in other classes.

� public static boolean isMountPoint(String dir) MountTable

Tells if dir is a mountpoint.

� final public void addFile(OpenFile file) TaskCB

Adds file to the open-files table of the task.

� final public void removeFile(OpenFile file) TaskCB

Removes the file handle from the task’s open files table.

� final public void suspend(Event event) ThreadCB

Suspends thread on the event.

� public void notifyThreads() Event

Notifies threads that are waiting on the event.

� final public int getIORBCount() OpenFile

Returns the IORB count of the open-file handle.

� final public void incrementIORBCount() OpenFile

Increments the IORB count of the open-file handle by 1.

� final public void decrementIORBCount() OpenFile

Decrements the IORB count of the open-file handle by 1.

� final public INode getINode() OpenFile

Returns the inode of the open-file handle.

� final public void setINode(INode inode) OpenFile

Sets the inode of the open file handle.

� final public TaskCB getTask() OpenFile

Returns the task of the open-file handle.

7.7 Class OpenFile 135

� public final int getOpenCount() INode

Returns the open file count of inode.

� public final void incrementOpenCount() INode

Increments the open-file count of the inode by 1.

� public final void decrementOpenCount() INode

Decrements the open file count of inode by 1.

� final public void releaseBlocks() INode

Frees up disk blocks held by the inode.

� public SystemEvent(String type) SystemEvent

The constructor for system events. The type parameter is used to pro-
vide a tag with which the event will be displayed in the log file. This
tag can be useful for debugging when you need to trace the execution
of your project. When a thread is suspended on a SystemEvent, it can
be thought of as having changed status from user thread to system
thread. See Section 4.3 for more details on suspension and resumption
of threads.

� public IORB(ThreadCB thread, PageTableEntry page,

int blockNumber, int deviceID, int ioType, OpenFile openFile)

Creates an IORB with the given parameters.

� final public int enqueueIORB(IORB iorb) Device

Enqueues iorb to its associated device. This operation is block-
ing and can cause a pagefault (and the ensuing swapping) because
enqueueIORB() needs to lock the target memory page in order to shield
it from page replacement. See Chapters 5 and 6 for a more thorough
explanation of page locking. This method returns SUCCESS if iorb has
been successfully enqueued. A failure is returned when enqueuing fails
(for example, if the original thread has died).

� final public int allocateFreeBlock() INode

Allocates a free block to the inode. The block becomes occupied.

Summary of the class OpenFile

The class OpenFile maintains the following important variables, which are
affected using the various methods of that class.

IORB count: The number of outstanding IORBs for the handle. Obtained
using getIORBCount() and changed using incrementIORBCount() and
decrementIORBCount().

136 7. FileSys: The File System

INode: The inode of the open-file handle. Obtained using getINode() and set
using setINode().

Task: The task that owns the open-file handle. Obtained using the getTask()

method.

closePending: This field is set to true by do close() if the OpenFile object
has outstanding IORBs and cannot be closed immediately. When the last
IORB for this OpenFile object is processed, do close() will close the file.

7.8 Class FileSys

You are to implement the following methods of class FileSys as part of this
project.

� public static void init()

As usual in OSP 2 , this method is called at the beginning of every simulation
run. It can be used to initialize static variables that your implementation
might use (for example, the variables used in the implementation of the
mount table, in the open-files table, in the list of free blocks on the various
devices, etc.).

� final static public int do create(String pathname, int size)

This method creates a file with a given pathname and size (in bytes). In
one sentence, this means making the necessary checks and then creating
the corresponding inode and the directory entry that relates pathname with
that inode. The devil is in the details, however, and this is what we will be
discussing next.

First, you have to check if the file with the same name already exists. If so,
FAILURE is returned. If a file is a mountpoint (is listed in the mount table),
then it is presumed to exist right from the start and, since mountpoints
cannot be created or destroyed, FAILURE should be returned in this case as
well. If the file does not exist, check if pathname refers to a directory or
a plain file. A pathname refers to a directory if it ends with the filename
separator, DirSeparator, but is not a mountpoint. It refers to a plain file
otherwise.

Note, however, that the convention that a directory name must end with
DirSeparator is used in the create() call only (just in order to avoid in-
troducing yet another system call). In all other contexts, pathnames such
as /foo/bar and /foo/bar/ refer to the same directory. Also, if a plain
file by the name /foo/bar already exists and do create() is called with

7.8 Class FileSys 137

/foo/bar/ as a parameter, the call should fail and FAILURE returned, be-
cause there cannot be a file and a directory with the same name. Likewise, if
do create("/foo/bar/",...)was earlier called to create a directory, then a
subsequent call do create("/foo/bar",...) should fail, because otherwise
we would have a file and a directory with the same name.

In view of the above, it is generally a good idea to normalize file names
before doing any file-name comparisons. A normalized pathname is a full
pathname such that it does not have repeated occurrences of DirSeparator
(pathnames /foo///bar// and /foo/bar/ are considered the same, but only
the latter is normalized). It may be convenient to also remove the trailing
DirSeparator in normalized directory names (except for the root of the file
system, /), but this depends on the particular algorithms that you are using.

Next, you must check if the caller intended to create a file or a directory by
checking the last character of pathname. The appropriate file-type indicator
(FileEntry or DirEntry) will later go into the directory entry for the file.
Also, for plain files, the size parameter indicates the size of the file in bytes.
However, for directories this parameter is ignored, since directories are as-
sumed to occupy exactly one disk block. The correct size parameter should
be used when constructing the corresponding inode.

It is common in programming to attempt to create a file in a non-existent di-
rectory with the intent that the system would create all the intermediate sub-
directories automatically. For instance, suppose that the directory /foo ex-
ists, but /foo/bar does not. In OSP 2 , the call do create("/foo/bar/moo/

abc.html",...) should then create the intermediate directories, /foo/bar
and /foo/bar/moo, before creating /foo/bar/moo/abc.html. Note that this
means that while creating the intermediate directories, do create() will call
create() (its OSP 2 wrapper), which in turn will call do create() recur-
sively.

Next you should check the mount table to determine the device where the file
is to be created. Recall from Section 7.4 that determining the device is the job
of method getDeviceID() of class MountTable. You need to make sure that
the device has enough free space. Recall that space management is the job of
the INode class. You might want to implement a method in that class which
returns the number of free blocks. If this number is less than the number
of blocks needed to accommodate our file, FAILURE should be returned. It
is therefore important to correctly calculate the number of blocks needed to
accommodate a file-creation request. Recall that do create() gets the size
of the file in bytes, and this has to be converted into disk blocks. The block
size equals the size of a virtual memory page, which can be obtained using
the two methods provided by the class MMU: getVirtualAddressBits() and

138 7. FileSys: The File System

getPageAddressBits().6

Note, however, that OSP 2 assumes that directories occupy exactly one block
and the file-size parameter in do create() should be ignored in this case.

After all these checks, nothing (but a computer crash) can stop us from
creating the file. You can use the constructor for the class INode to create
a new inode. Next, you should use methods incrementLinkCount() and
allocateFreeBlock() of INode to update the count of hard links to the
inode and to allocate the right number of disk blocks to it. The inode should
also be inserted into the device’s file allocation table for safekeeping.

To complete the process, you must create a directory entry for pathname

and insert it into the appropriate directory. This is accomplished using the
constructor of DirectoryEntry and other methods that depend on your
implementation of directories.

When all is done, SUCCESS is returned.

� final static public int do link(String pathname, String linkname)

This method creates a new hard link, with name linkname, to the inode
associated with pathname. The process is similar to creating a file: you need
to check if a directory entry for linkname already exists and return FAILURE

if it does. Otherwise (if there is no file named linkname), you must create
an appropriate directory entry. However, there also are significant differences
between linking and creating files.

First, no new inode need be created. Instead, the inode associated with
pathname is used. Therefore, no additional space need be allocated. Sec-
ond, hard links to directories are not allowed (as in Unix). Third, unlike
the case of file creation, no intermediate directories are created. So, if the
directory /foo exists but /foo/bar does not, then creation of a hard link
/foo/bar/abc.html to another file should fail.

Other than that, creation of a new directory entry to associate linknamewith
the inode of pathname proceeds as in the case of do create(). In particular,
do not forget to increment the hard-link count.

Note one interesting thing: after a hard link to an inode is created, linkname
and pathname become virtually indistinguishable. That is, linkname is as
much of a “file name” for the corresponding inode as pathname is. The inode

6 Note that a file-creation request might specify size 0, in which case the request
must succeed even if the device has no room.

7.8 Class FileSys 139

itself does not contain any file-name information and all the naming takes
place in directory entries.

� final static public int do delete(String pathname)

Destroying a file is not as simple as it might seem. First, you must check if
a file with the name pathname exists. Note that you cannot always tell from
the name whether it refers to a plain file or a directory, so you must use
normalized names to do the checks. Also, non-empty directories cannot be
deleted and, of course, deletion of mountpoints is not allowed. In all these
cases, FAILURE should be returned.

Once you get past these checks, you must remember that pathname is just one
of the several possible hard links to the inode associated with a file. If after
deleting the directory entry for pathname and decrementing the hard-link
count the number of hard links for the inode (obtained via getLinkCount())
is non-zero, do not delete the inode. Recall that inodes also have an open
count, in addition to a hard-link count, which counts the number of open-
file handles for the inode. If this count is positive, the inode must not be
deleted. In both cases, however, the directory entry for pathname must still
be deleted. If the hard-link count as well as the open count are zero, both the
inode and the directory entry must be deleted. In case the inode is deleted,
all its blocks must be freed up (using releaseBlocks()). Finally, SUCCESS
should be returned.

� final static public Vector do dir(String dirname)

This method returns a vector of normalized file names that reside in directory
dirname. If dirname does not exist or is not a directory, null is returned.

Relevant methods from other classes. The following methods might
be required to implement class FileSys.

� public static boolean isMountPoint(String dir) MountTable

Tells if a given pathname is a mountpoint.

� static final public int getVirtualAddressBits() MMU

Tells how many bits are used to represent a virtual address. This method
and the next method can be used to determine how many bits are needed
to represent an address within a page, from which the page/block size
can be computed.

� static final public int getPageAddressBits() MMU

Tells the number of bits used to represent a page address.

� public final int getLinkCount() INode

Returns the number of hard links to the inode.

140 7. FileSys: The File System

� public final void decrementLinkCount() INode

Decrements the hard-link count for inode.

� public final void incrementLinkCount() INode

Increments the hard-link count for the inode.

� public final int getOpenCount() INode

Returns the count of open-file handles for the inode.

� final public int allocateFreeBlock() INode

Allocates a free block to the inode. The block becomes occupied.

� final public void releaseBlocks() INode

Releases all the blocks held by the inode.

� public final int getDeviceID() INode

Tells the device Id of the inode.

� final public static int create(String name, int size) FileSys

The OSP 2 wrapper for do create()

� final public static INode getINodeOf(String pathname)

DirectoryEntry

Returns the inode associated with pathname. If no direc-
tory entry for pathname exists, returns null.

� final public static void showDirectory(String dirname)

DirectoryEntry

Prints the directory listing for dirname to the log file. This
method can be useful for debugging, since it shows what
OSP 2 believes the correct listing is supposed to be.

Summary of Class FileSys

In OSP 2 , the class FileSys does not typically maintain important data struc-
tures of its own. Instead, it serves as a container for methods that do not
logically belong to any other class in the package. For instance, the method
do delete() for deleting files based on a string that represents the file name
cannot be naturally attached to any other OSP 2 class. Such methods do not
normally maintain complex data of its own. Instead, they operate on the data
structures defined in other classes, such as DirectoryEntry or MountTable,
using the methods provided in those classes.

7.9 Methods Exported by the FileSys Package 141

7.9 Methods Exported by the FileSys Package

The following is a summary of the public methods defined in the classes of the
FileSys package or in the corresponding superclasses, which can be used to
implement this and other student packages. To the right of each method we
list the class of objects to which the method applies.

� final public static int create(String name, int size) FileSys

Creates a file with the specified name and size.

� final public static void delete(String name) FileSys

Deletes the directory entry for the specified file.

� final public static OpenFile open(String filename, TaskCB task)

OpenFile

Opens the specified file filename by task and returns the newly created
open-file handle (or null, if the operation fails).

� final public int close() OpenFile

Closes the file handle on which this operation is invoked.

� final public void read(int fileBlockNumber, OpenFile

PageTableEntry memoryPage, ThreadCB thread)

Performs the read I/O operation using the given open-file handle. Reads
data from logical file block fileBlockNumber into memoryPage on behalf
of thread.

� final public void write(int fileBlockNumber, OpenFile

PageTableEntry memoryPage, ThreadCB thread)

Performs the write I/O operation using the given open-file handle.
Writes data to logical file block fileBlockNumber from memoryPage

on behalf of thread.

8
Ports: Interprocess Communication

8.1 Chapter Objective

The objective of the Ports project is to teach students about interpro-
cess communication and requires that the student implement two public
classes: Message, which describes what OSP 2 messages look like, and Port-

CB, which implements the main communication primitives, such as send() and
receive().

8.2 Interprocess Communication in OSP 2

Interprocess communication in OSP 2 is based on the abstraction of a port
and is modeled after the Mach micro-kernel. In Mach, a process can open a
port, and other processes can then send messages to it which can be received
by the owning process; a message is basically a block of bytes. Mach manages
the ports, and provides guaranteed, in-order delivery, with large messages being
handled efficiently by sharing pages between address spaces. There is a sophis-
ticated permission mechanism which restricts the operations that processes can
perform on ports.

Thus, a port is like your home mailbox. A task can create a port to serve as
a mailbox to which threads from other tasks can send messages.1 Only threads
1 Note that threads of the same task do not need to communicate this way, since

144 8. Ports: Interprocess Communication

of the owner task can read from the ports of that task; other threads only
write to that port. In OSP 2 , reading from a port is done using the receive()

operation and writing is performed via the send() operation.
The OSP 2 model of communication is based on reliable message deliv-

ery, i.e., correctly formed messages never get lost. When threads communicate,
they exchange discrete entities, called messages. A message has length and Id.
When a thread sends a message to a port, the message is delivered to the des-
tination port and is placed in that port’s message buffer. Port buffers are as-
sumed to have finite byte size specified in a global constant PortBufferLength.
If the message is bigger than this amount, the send() operation fails and the
message is not delivered. If the message is smaller than PortBufferLength, it
is considered well-formed and deliverable. However, the destination port might
not have enough room due to other messages that might have been delivered to
that port but not yet consumed. In this case, the send() operation suspends
the sender thread until room becomes available.

When a thread wants to receive a message, it invokes the receive()method
on a port. If a message is available, it is removed from the port message buffer
and the operation succeeds. If, however, the port is empty, then the receiver
thread is suspended until a message arrives.

It is thus clear that a mechanism is needed for threads to suspend themselves
and to be notified. In OSP 2 , this is accomplished through the familiar Event
class. More precisely, PortCB is a subclass of Event, and threads can suspend
themselves on a port when necessary. Likewise, when appropriate conditions
arise (e.g., a port buffer gets more room or a message arrives at an empty port),
threads that are waiting on the port can be notified. (Note that several threads
can be waiting on the same port at the same time.)

The classes comprising the Ports package are described below. The class
diagram of Figure 8.1 places these classes in the overall context of the OSP 2

system.

8.3 The Message Class

The Message class has only one required method, the class constructor, which
takes a length argument and creates a message with a unique Id.

� public Message(int length)

The message constructor. Must call super(length) as its first statement.
Your implementation might also add other fields and methods to this class.

they share virtual address space and thus can communicate much more efficiently
through shared variables.

8.3 The Message Class 145

Figure 8.1 A diagram summarizing the package Ports.

In addition, your implementation of class PortCB can use a number of methods
defined in class Message provided by OSP 2 :

� public int getID()

Returns the Id of the message.

� public int getLength()

Returns the length of the message in bytes.

146 8. Ports: Interprocess Communication

Built-ins and relevant methods defined in other classes. The method
constructor for class Message does not use any methods provided by other
OSP 2 classes.

Summary of Class Message

A message in OSP 2 is a simplified abstraction of messages used in real com-
munication protocols, such as TCP/IP: it includes only these two parameters:

ID: The ID of a message. The value of an ID can be retrieved using the method
getID().

length: The length of a message. This parameter can be queried using the
method getLength().

8.4 The PortCB Class

The methods of PortCB to be implemented as part of the student project
include the class constructor, the initialization method, the methods for creat-
ing/destroying ports and for sending/receiving messages.

A port has an Id, the owner task, a status (PortLive or PortDestroyed),
and a message buffer. OSP 2 provides methods for manipulating the message
buffer of a port (appendMessage(), removeMessage(), isEmpty()), but the
student implementation must keep track of the free space left in the buffer in
order to be able to correctly decide when a message can be sent to the port.

� public PortCB()

This is a class constructor whose only required statement is super(), the
usual call to the corresponding constructor in the superclass.

� public static void init()

This is the usual initialization method, which is called at the very beginning
of the simulation run. It is a place where your implementation can initialize
static variables.

� public static PortCB do create()

This method creates and returns a new port. After a new PortCB object
is created, it needs to be assigned to the current task, i.e., the task that
owns the currently running thread. Recall from Chapter 5 that PTBR, the
page table base register, always points to the page table of the current

8.4 The PortCB Class 147

task. Thus, the current task can be retrieved using the following idiom:
MMU.getPTBR().getTask().

To assign the port to the task, use the method addPort() of TaskCB. How-
ever, keep in mind that there is a limit of how many ports a task can have,
which is defined by the global constant MaxPortsPerTask. If the task al-
ready has that many ports, addPort() will return FAILURE and do create()

should then return the null object.

If all is well, the owner task of the port should be set (using setTask()), and
the status set to PortLive using the method setStatus() of class PortCB,
which is provided by OSP 2 . In addition, you have to initialize the variables
that you might have introduced to keep track of the state of the message
buffer. Finally, the newly created PortCB object is returned.

� public void do destroy()

Ports are destroyed by the owner task when they are no longer needed for the
task’s operation or when the task itself is killed. To destroy a port, the port’s
status should be set to PortDestroyed, and the port should be removed from
the task’s table of active ports. The latter is accomplished using the method
removePort() of TaskCB. Next, the port’s owner task should be set to null
using the method setTask() of PortCB.

You must also notify the threads that might be waiting for an event as-
sociated with this port. As usual, this is accomplished using the method
notifyThreads() applied to the appropriate event.

� public int do send(Message msg)

Prior to sending a message, you must first check that the message is well-
formed. In OSP 2 , this means that the parameter msg is not null and that
the message length is not greater than the length of the port message buffer.
If the message is not well-formed, FAILURE should be returned.

In the next step, a new system event must be created using the constructor
SystemEvent() and the current thread must be suspended on that event. You
already saw how to find the current task from the page table base register.
The current thread is obtained using the method getCurrentThread() of
that task.

At this point it is recommended that you refresh your memory about thread
suspension and resumption as described in Section 4.3. A thread that is
suspended on a system event is not really blocked, but instead can be thought
of as having changed status from user thread to system thread. When the
send operation is complete, the event will “happen” and the thread will be
resumed. To be able to resume the thread before leaving do send(), you

148 8. Ports: Interprocess Communication

should save the SystemEvent object in a variable.

Now you are ready to attempt to send the message. Recall that if the des-
tination port (i.e., the port on which the send() method is executed) does
not have enough room in the message buffer, the sender thread must be sus-
pended on that port. (Recall that you have saved the information about that
thread before suspending it on a SystemEvent.) A thread T suspended on
a port can be woken up when the port gets more room in its buffer. This
happens when one of the threads that owns the port executes a receive()

operation on that port. However, the sending thread T might discover that
the port still does not have enough room for the message because either
too little space was freed up or because some other thread managed to send
a message to the port before T had a chance. In this case, T has to be
suspended again (on the same port).

Another possibility is that the newly awakened thread was killed while wait-
ing to send the message. FAILURE should be returned in this case. The
third possibility is that the thread might have been awakened because the
owner task decided to destroy the port on which the thread was suspended
(or, maybe, the task itself was killed). Again, FAILURE should be returned.
In addition, you should notify the threads that were suspended on the
SystemEvent associated with the current send operation. (Recall that the
current thread was suspended on this event at the beginning of the do send()
method.)

If none of the above problems are detected, you know that send should
succeed. Thus, you should update the message buffer of the port (using
appendMessage()) and, if the buffer was previously empty, notify the threads
that may be waiting on that port in the receive mode.2 Finally, you should
execute notifyThreads() on the previously created SystemEvent object and
return SUCCESS.

� public Message do receive()

First, you must check that the receive operation is permitted, i.e., that
the receiving thread’s task owns the port on which do receive() has been
invoked. If this is not the case, null should be returned. Second, when a
thread T executes a receive() operation on a port P, you must create a
SystemEvent object and suspend T on that event. As explained earlier, this
corresponds to T changing its status from user thread to system thread. Note
that the receiving thread T is the currently executing thread, which can be
obtained using the PTBR.

2 Note that other threads may have been waiting to receive a message from this
port only if its message buffer was empty.

8.4 The PortCB Class 149

Next, recall that the receiving thread must be suspended if the message
buffer of the port contains no messages. This thread can be woken up when
some other thread sends a message to that port. However, keep in mind that
although a port can have several threads suspended in receive mode, only
one of them will be awakened and thereby succeed in getting a message. All
other threads would have to be suspended again.

There is a possibility that a woken-up thread was killed or that the port
was destroyed. In both cases, do receive must return the null object. If
none of the above bad things happen, the do receive() method succeeds.
In this case, the method should “consume” a message from the port message
buffer using removeMessage() and notify threads waiting on the port. (This
is needed because consuming a message will probably free up space in the
message buffer of the port and, as a result, some previously suspended send
operation might be able to proceed.) Finally, the message consumed by this
receive operation should be returned.

In all cases (whether the receive operation ended successfully or not), prior
to exiting you must execute notifyThreads() on the previously created
SystemEvent object for this receive operation.

Built-ins and relevant methods from other classes. A typical imple-
mentation of the methods in class PortCB uses the following methods defined
in other classes or methods of PortCB provided by OSP 2 :

� final public int addPort(PortCB newPort) TaskCB

Adds a new port to the task.

� public int removePort(PortCB oldPort)

Removes oldPort from the task.

� public ThreadCB getCurrentThread() TaskCB
Returns the currently running thread of the task. Null, if the task itself is
not current.

� static public PageTable getPTBR() MMU

Returns the value of PTBR.

� public final TaskCB getTask() PageTable

Returns the owner task for the page table.

� final public int getStatus() ThreadCB

Tells the status of the thread.

� final public void suspend(Event event) ThreadCB

Suspends the thread on event.

150 8. Ports: Interprocess Communication

� final public int getStatus() PortCB

Tells the status of the port.

� final public void setStatus() PortCB

Sets the status of the port.

� final public void setTask(TaskCB owner) PortCB

Sets the port owner.

� final public TaskCB getTask() PortCB

Tells who owns the port.

� final public Message removeMessage() PortCB

Removes a message from the port’s message buffer.

� final public void appendMessage(Message msg) PortCB

Appends a new message to the port’s message buffer.

� final public boolean isEmpty() PortCB

Checks if the port’s message buffer is empty.

Summary of the PortCB class

The PortCB class maintains information about the open ports attached to the
various processes. The following list describes the main attributes of a port and
the methods that are used to query these attributes.

Port ID: OSP 2 assigns an ID to each port at creation time. This ID can be
retrieved using the method getPortID() of the PortCB class.

Owner: This is the task that owns the port. This attribute is manipulated using
the methods getTask() and setTask().

Status: PortLive or PortDestroyed. This attribute is manipulated using the
methods getStatus() and setStatus().

Message buffer: This buffer is manipulated using the methods appendMessage(),
removeMessage(), and isEmpty() of class PortCB, and are provided by
OSP 2 . However, your implementation must keep track of the free space
left in the message buffer.

8.5 Methods Exported by Package Ports 151

8.5 Methods Exported by Package Ports

The Ports package exports the following methods that are used by other
packages in the system:

� final static public void create()

Creates a new port.

� final public void destroy()

Destroys an existing port.

� final public void send(Message msg)

Sends a message, msg, to the port on which this method is invoked.

� final public Message receive()

Receives a message from the port on which this method is invoked.

9
Resources: Resource Management

9.1 Chapter Objective

The objective of the Resources project is to expose students to the concept
of shared resources in a concurrent system, and to provide an environment in
which they can implement various deadlock-handling techniques. OSP 2 simu-
lation supports two approaches to handling deadlock in an operating system:
deadlock avoidance and deadlock detection, discussed further below. To
this end, students will be asked to implement the three public classes of the
Resources package: ResourceCB, the resource control block; RRB, the resource
request block; and ResourceTable.

9.2 Overview of Resource Management

The Resources project focuses on techniques for managing shared resources in
a concurrent system. Examples of such resources include files, printer, disks, and
interprocess-communication messaging buffer space. When processes compete
for access to shared resources, especially when such access is exclusive, deadlock
becomes an issue. Simply put, deadlock arises when there exists a closed chain
of processes such that each process holds at least one resource needed by the
next process in the chain. This phenomenon is known as circular wait.

For circular wait to exist it must be the case that processes require:

154 9. Resources: Resource Management

Mutual Exclusion. Mutually exclusive access to resources;

Hold and Wait. A process may hold allocated resources while awaiting assign-
ment of others; and

No Preemption. No resource can be forcibly removed from a process holding
it.

Clearly deadlock is an undesirable situation since if it is not dealt with prop-
erly the processes involved in the deadlock will wait forever, without furthering
their execution. There are three main techniques for dealing with deadlock in
an operating system:

Deadlock Prevention. Design the system in such a way that the possibility of
deadlock is excluded. This can be accomplished by constraining resource
requests to prevent one of the four conditions of deadlock. For example,
the hold-and-wait condition can be prevented by requiring that a process
request all of its resources at one time and blocking the process until all
requests can be granted simultaneously.

Deadlock Avoidance. With this technique, a decision is made dynamically
whether the current resource request will, if granted, potentially lead to
a deadlock; if so, the request is denied. Deadlock avoidance thus requires
knowledge of future process resource requests. A primary approach to dead-
lock avoidance utilizes the Banker’s algorithm. The idea here is to de-
termine if the current allocation of resources to processes represents a safe
state: one in which there is at least one sequence of process resource re-
quests that does not result in a deadlock; i.e. all of the processes can be
run to completion.

Deadlock Detection. Resource request are granted to processes whenever pos-
sible. Periodically, the operating system executes an algorithm that checks
if deadlock (circular wait) exists. If so, a recovery strategy is undertaken,
namely one of the following.

� Abort all processes.

� Back up each deadlocked process to some previously defined checkpoint
and restart all processes.

� Successively abort deadlocked processes until deadlock no longer exists.

� Successively preempt resources until deadlock no longer exists.

9.3 Overview of Resource Management in OSP 2 155

9.3 Overview of Resource Management in
OSP 2

OSP 2 provides simulation support for deadlock avoidance and deadlock de-
tection. This means that it understands the semantics of each of these two
types of deadlock handling and provides appropriate error-checking facilities.
For instance, in deadlock avoidance, a deadlock created after granting a re-
source allocation request to a process is considered an error, while in deadlock
detection it is not.

The class ResourceCB does the bulk of the work. It represents the resource
control block, where much of the information about the available resources is
maintained. Resources are divided into resource types, where each resource
type can have several resource instances. Each resource type is represented
by a distinct resource control block.

A thread might issue a request to acquire a given number of instances of a
particular resource type, but it does not care which particular resource instances
are given to it as long as the instances are of the requested type. When such
a request arrives, the operating system (which is part of the student code in
class ResourceCB) must decide whether to grant the request, abort (kill) the
requesting thread, or block the thread until its request is granted at some future
time. This decision depends on the current state of resource allocation and on
the deadlock-handling method (detection or avoidance) in use.

The class RRB represents resource request blocks. An RRB contains in-
formation about one outstanding request for one particular resource type issued
by a particular thread. An RRB object is also an Event object (Section 1.6).
When a thread issues a request that cannot be granted, the thread is suspended
on the RRB associated with this request. Subsequently, when the needed re-
sources become available, a notifyThreads() operation issued on that RRB
will eventually wake up the thread.

The resource table is represented by the class ResourceTable; it is repre-
sented as an array of ResourceCB objects and lists all resource types available
in the system. In OSP 2 , all resource types are created at the beginning of
simulation and no new resources are added or deleted afterwards. The total
number of instances of each resource type remains constant as well. However,
the number of available resource instances changes as processes acquire and
release them.

Resource types are identified by a resource ID, a number between 0 and the
resource table size, which is determined using the static method getSize() of
class ResourceTable.

We will now describe the classes of package Resources in detail. Figure 9.1

156 9. Resources: Resource Management

depicts the relationship these classes have with the other classes in the OSP 2

system.

9.4 Class ResourceTable

This class is the simplest of them all: only a constructor is required. You can
add other methods and variables to support your implementation of the project,
but these would be specific to your particular design.

� public ResourceTable()

Calls super() and might do additional initialization, if the student imple-
mentation defines additional fields in this class.

OSP 2 provides the following built-ins that you will use to implement other
classes in this project:

� public static final ResourceCB getResourceCB(int resourceID)

Since resource types are identified using their numeric IDs, this method lets
you visit, in a loop, the resource control block of every resource type in the
system.

� public static final void getSize(int size)

Returns the size of the resource table, which is also the number of resource
types available in the system.

Built-ins and relevant methods defined in other classes. Since this
class has only its constructor, your implementation will not use any methods
provided by other OSP 2 classes.

Summary of Class ResourceTable

This class is intended to maintain the resource table of the system. A resource
table is simply a fixed-size array of resource objects. This size can be queried
using the method getSize(). In addition, resource objects can be retrieved
from the table using the getResourceCB() method, as described earlier.

9.5 Class RRB 157

Figure 9.1 A diagram summarizing the package Resources.

9.5 Class RRB

This class represents the resource request block, which threads use to specify
their requests to the system. It is declared as follows:

� public class RRB extends IflRRB

158 9. Resources: Resource Management

Note that IflRRB extends class Event, which makes it possible to treat RRB
objects as events. In particular, threads can be suspended on an RRB object
and later resumed.

An RRB object includes the following information:

� The ID, which can be obtained with the help of the method getID().

� The thread that issued the request; it can be obtained using the method
getThread().

� The resource type involved in the request. Its control block can be obtained
using the method getResource(). Only one resource type can be requested
using an RRB.

� The quantity of the requested resource. It is obtained by calling the method
getQuantity().

� The status of the RRB. The status can be one of these constants defined by
OSP 2 : Denied, Suspended, Granted. The status is Denied when the system
denies the request (because, for instance, the thread wants more resource
instances than the total that the system has); it is Suspended if the system
decides that the resource request cannot or should not be granted now, but
can be in the future; when the request is granted, the status is set to Granted.
Two methods are used to manipulate the status of an RRB: getStatus()
and setStatus().

The class RRB contains only two methods that need to be implemented by
the student:

� public RRB(ThreadCB thread,ResourceCB resource,int quantity)

This is the class constructor. The first statement in this constructor must
be super(thread, resource, quantity), but the rest depends on your
program design.

� public void do grant()

This method is used to grant the RRB on which it is invoked. Note that
do grant() does not make any decision on whether to grant or not. This
decision is made elsewhere, as described later in this chapter. Thus, this
method does bookkeeping only. In particular, it decrements the number of
available instances of the requested resource by the requested quantity and
increments the number of allocated instances of this resource by that same
quantity. The current number of available instances of a resource is given
by the method getAvailable() and is set by the method setAvailable().
Similarly, the number of allocated resources is obtained and changed using
the methods getAllocated() and setAllocated(), respectively.

9.5 Class RRB 159

To finish granting the request, the status of the RRB must be set to Granted

and the thread that was waiting on this RRB should be resumed. The latter
is done by invoking the method notifyThreads() of class Event (recall that
a RRB is also an Event object).

Built-ins and relevant methods defined in other classes. The im-
plementation of the methods in the RRB class relies on the following methods
provided by other classes (or inherited from the superclasses of RRB):

� final public int getStatus() RRB
Returns the status of the RRB: Denied, Suspended, or Granted.

� final public void setStatus(int value) RRB

Sets the status of the RRB to Denied, Suspended, or Granted.

� final public int getID() RRB

Returns the ID of the RRB.

� final public int getQuantity() RRB
Returns the quantity of the resource requested by the thread that issued
the request.

� final public ThreadCB getThread() RRB

The thread that issued the request.

� final public ResourceCB getResource() RRB

The resource for which the request was issued.

� public final int getAvailable() ResourceCB

Returns the number of free instances of this resource type.

� public final void setAvailable(int value) ResourceCB

Sets the number of free instances of this resource type.

� public final int getAllocated(ThreadCB thread) ResourceCB

Returns the number of allocated instances of this resource type.

� public final void setAllocated(ThreadCB thread,int value)

ResourceCB

Sets the number of allocated instances of this resource type.

Summary of Class RRB

The class RRB is intended to maintain the information about requests that were
issued by the various threads for the non-shareable resources that are provided

160 9. Resources: Resource Management

by the system. As mentioned earlier, an RRB object has the following attributes:
ID, thread, resource type, the quantity of the requested resource type, and the
status of the request. These attributes can be queried and manipulated using
the methods described earlier in the section.

9.6 Class ResourceCB

This class does most of the work. In particular, this is where the deadlock
detection and avoidance algorithms are implemented. The deadlock-avoidance
algorithm is invoked by the do acquire() method, while deadlock detection
is the responsibility of the method deadlockDetection(), which is invoked
periodically by OSP 2 . The ResourceCB class is declared as follows:

� public class ResourceCB extends IflResourceCB

Most textbooks describe deadlock avoidance and detection algorithms in
terms of the various resource allocation and resource request matrices, which
are used for keeping track of the current state of system resources. This all looks
simple enough, except for one important point: textbook algorithms all assume
that all the threads and resource types are known in advance, so they represent
the matrices as two-dimensional arrays. In a real system, neither resources, nor
threads are static: they come and go and their total number cannot be assumed
to be bounded by a known constant. Therefore, matrices used by the real-life
deadlock-handling algorithms cannot be represented as two-dimensional arrays.

In OSP 2 , the number of resource types is fixed, which simplifies things a
bit. However, the number of threads that can potentially request resources is
not known and cannot be estimated. Thus, using two-dimensional arrays for
representing resource allocation and request matrices is also out of the question:
you must come up with another suitable data structure. Since most operations
in deadlock-detection and -avoidance algorithms reference the matrix elements
via a specific resource and/or thread, your data structure must provide efficient
access to the matrix elements using either of these keys. For instance, if you
have to scan arrays and compare their entries to a particular thread ID or
resource, it is a sure sign that you have chosen a bad data structure.

One good data structure in this case would be an array of hash tables,
where each hash table represents all requests made by the various threads for
a particular resource type. Since Java hash tables are dynamic, they provide
exactly what the doctor ordered for this particular problem.

� public ResourceCB(int qty)

This is the required class constructor. It must have super(qty) as its first

9.6 Class ResourceCB 161

statement, but the rest depends on your program design.

� public static void init()

As in other student modules, this method is called by the simulator at the
beginning of simulation. It can be used to initialize the static variables and
structures that you might use in your implementation.

� public RRB do acquire(int quantity)

This method is typically invoked by an OSP 2 thread on a given resource
type (represented by a ResourceCB object) in order to obtain quantity

instances of that resource type. To determine which OSP 2 thread has issued
the request, the following method can be used. First, the current task can be
found from the page table base register, or PTBR; see Section 5.2 for more
information on this subject. The value of the PTBR is the page table of
the currently running task. In OSP 2 , the value of the PTBR is obtained
using the static method getPTBR() of class MMU, and the current task can be
obtained from a page table via the method getTask().

Next, you have to create an RRB that describes the request. What follows
depends on whether the simulator is in deadlock-avoidance or deadlock-
detection mode (which is determined by an input simulation parameter that
you might have spotted in the GUI window). To find out which mode is in
effect, use the method getDeadlockMethod().

If the deadlock-handling method is Detection, there are three possibilities.
If the system has enough available instances of the requested resource, the
request is granted immediately by executing the method grant() on the
RRB. If the requested number of instances cannot be granted under any
circumstances (e.g., because the total number of instances of the requested
resource type that are either held or requested by the given thread exceeds
what the system has), then null is returned. If the requested number of
instances cannot be granted immediately (but might be in the future, if all
other threads release their resources) then the requesting thread must be
suspended on the RRB and the RRB’s status should be set to Suspended.
The RRB status is set using the method setStatus(), while threads are
suspended using the suspend() method of class ThreadCB. Recall that an
RRB is an Event object as well, so in order to suspend a thread on an RRB,
the RRB must be passed as a parameter to suspend(). Read more about
thread suspension and resumption in Section 4.3.

If the deadlock-handling method is Avoidance, then you must use a deadlock-
avoidance algorithm, such as the Banker’s algorithm. If this algorithm says
that it is safe to grant the request, the RRB is granted. Otherwise, the thread
is suspended and the RRB status is set to Suspended as well.

162 9. Resources: Resource Management

When a thread is suspended inside do acquire(), its execution is paused
until the request is granted (possibly as a result of a release() operation
on the same resource or of giveupResources() operation, which is invoked
when a thread is killed), and the thread is resumed. Whether the RRB is
granted immediately or the thread is suspended, do acquire() returns the
RRB that was created earlier in order to represent the request.

� public void do release(int quantity)

This method might be invoked by an OSP 2 thread on a given resource type
(represented by a ResourceCB object) in order to release quantity instances
of that resource type.

As with do acquire(), you first must find the thread that issued the
release() request. Then the state of the resource allocation should be up-
dated appropriately in order to reflect the new number of free resources and
the new allocation of the given resource to the thread. Note that the thread
might release some, but not all, instances held for this resource type. The ex-
act details depend on your representation of the resource-allocation state, but
this would typically involve the methods setAllocated(), setAvailable(),
getAvailable(), etc.

This is not all, however. Since new resources became available after the re-
lease operation, it is possible that some of the previously suspended requests
can now be granted. In order to be able to determine whether this is the
case, one needs to keep track of the RRBs that were previously suspended
in do acquire(). Once a grantable RRB is found, it should be granted (us-
ing the grant() method) and the thread waiting on that RRB is resumed
(resumption is done by method grant()).

� public static Vector do deadlockDetection()
If the simulation method is Detection, this method will be periodically

called by OSP 2 in order to test your implementation of the deadlock-
detection algorithm. This method should first check if a deadlock exists and,
if so, remove it. Your instructor might have imposed specific requirements
on your implementation of deadlock detection and recovery, and OSP 2 adds
its own.

First, there should be no deadlocks left after do deadlockDetection() re-
turns. The result returned by this method should be a vector of ThreadCB

objects that were found to be involved in a deadlock. OSP 2 will compare this
list with its own and will issue an error if the two lists differ. If no deadlock
exists, null should be returned.

You can use any textbook deadlock-detection algorithm that can detect dead-
locks in the presence of multiple instances per resource type. (For instance,

9.6 Class ResourceCB 163

cycle detection in a wait-for graph would not be a suitable algorithm for this
purpose.)

Deadlock recovery is done by killing some or all of the threads involved in
the deadlock. However, OSP 2 insists that threads must not be killed unnec-
essarily. This means that no thread should be killed unless it is deadlocked
and, in addition, if the deadlock is gone after killing of some deadlocked
threads, then no further thread destruction should occur.1

Threads are killed using the kill() method of class ThreadCB. Note that
when a thread is killed, it releases its resources by calling do giveupResources()

(described next). As in the case of the do release() method, this creates
an opportunity for granting a previously suspended RRB and resuming the
associated thread. See the description of do release() to learn how to do
this.

� public static void do giveupResources(ThreadCB thread)

This method is called in order to release all resources previously allo-
cated to thread, and it happens when thread is terminated. You will never
need to call this method in this project. Instead, your implementation of
this method is made available to other OSP 2 modules, which will call
do giveupResources() when necessary. This method should go over the re-
sources allocated to the given thread and update the number of the available
instances of such resources accordingly. The number of resources allocated
to the thread should also be adjusted (to 0).

Since the thread releases its resources, the system might have enough free
resources to unblock some suspended RRBs. Therefore, as in the case of
do release(), it is necessary to check the suspended RRBs and grant those
that are grantable.

Built-ins and relevant methods defined in other classes. The follow-
ing methods and fields, which are defined in other classes or are provided by
the superclasses of ResourceCB, might be used in the implementation of the
class ResourceCB.

� public final int getID() ResourceCB

Returns the ID of the resource.

� public final int getTotal() ResourceCB

Returns the total number of instances (free plus allocated) for this resource
type.

1 Note that if N threads are involved in the deadlock, then killing any N −1 of them
will eliminate the deadlock. But often the deadlock can be eliminated by killing
fewer than N − 1 threads.

164 9. Resources: Resource Management

� public final int getAllocated(ThreadCB thread) ResourceCB

Returns the number of allocated instances of this resource type.

� public final void setAllocated(ThreadCB thread,int value)

ResourceCB
Sets the number of allocated instances for this resource type.

� public final int getAvailable() ResourceCB

Returns the number of free instances of this resource type.

� public final void setAvailable(int value) ResourceCB

Sets the number of free instances for this resource type.

� public final int getMaxClaim(ThreadCB thread) ResourceCB

Returns the maximal number of instances of this resource type that can
ever be acquired by the given thread. Used for deadlock avoidance only.

� public final static int getDeadlockMethod() ResourceCB

Returns the deadlock-handling method currently in effect: Avoidance or
Detection.

� public final static int getSize() ResourceTable

Returns the size of the resource table. This value is also equal to the number
of different resource types in OSP 2 .

� public static final ResourceCB getResourceCB(int resourceID)

Given an index into the resource table, returns the ResourceCB object in
that table cell. This method makes it possible to visit the resource control
block of each resource type in a loop.

� static public PageTable getPTBR() MMU

Returns the value of the page table base register, which is either null or
the page table of the currently running task.

� public final TaskCB getTask() PageTable

Indicates which task owns the given page table. In Resources, this method
is used to determine the thread that issued the request.

� public ThreadCB getCurrentThread() TaskCB

Returns the running thread of the currently running task.

� public RRB(ThreadCB thread, ResourceCB resource, int quantity)

RRB

A constructor for creating resource request blocks with the given parame-
ters.

� public final void grant() RRB

Grants the request represented by this RRB.

� final public void setStatus(int value) RRB

Sets the status of the RRB to Denied, Suspended, or Granted.

9.6 Class ResourceCB 165

� final public ThreadCB getThread() RRB

The thread that issued the request represented by this RRB.

� final public ResourceCB getResource() RRB

The resource for which the request was issued.

� final public int getQuantity() RRB

Returns the quantity of the resource requested by the thread that issued
the request.

� final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts the thread on
the waiting queue of event.

� final public void kill() ThreadCB

Kills this thread. Note that this will cause the thread to release its resources,
which in turn might make some previously suspended RRBs grantable.

� final public int getStatus() ThreadCB

Returns the status of the thread. See Section 4.3 for more information on
the different states of a thread. In this project you might need to know
that killed threads have status ThreadKill. If such a thread shows up in
a resource-allocation matrix or elsewhere, you might want to delete or skip
it in your algorithms.

� public void notifyThreads() Event
Resumes all threads that might be waiting on this event. In the case of
package Resources, the event would be an RRB and the single resumed
thread would be the thread that issued the corresponding request.

Summary of Class ResourceCB

Instances of this class are used to represent individual non-shareable resources
in the system. An individual resource has the following attributes:

ID: The identity of the resource. This parameter can be retrieved using the
built-in getID().

Total number of instances: This attribute describes the total number of in-
stances of the resource that exist in the system. It can be obtained using
the built-in method getTotal().

Number of allocated instances: The number of instances of the resource that
are currently allocated to a given thread. This parameter can be re-
trieved using the method getAllocated() and changed using the method
setAllocated().

166 9. Resources: Resource Management

Number of free instances: This parameter represents the number of free in-
stances of the resource. It can be obtained by calling the built-in method
getAvailable() and changed using the method setAvailable().

Maximum number of claimable instances: This parameter represents the max-
imal number of instances of a resource that can possibly be acquired by a
single thread.

9.7 Methods Exported by the Resources
Package

Only one method defined in this package is used by other modules:

� public static void giveupResources(ThreadCB thread) ResourceCB
Called by terminating threads in order to release the abstract shared re-

sources held by that thread.

Index

CPU, 8
Disk, 9
FrameTableEntry, 75
HClock, 9
HTimer, 9
MMU, 75
Message, 144
MyOut, 32
OpenFile, 49, 52
PageFaultHandler, 75
PageTable, 75, 101
PageTableEntry, 75
ThreadCB, 61
TimerInterruptHandler, 71

acquiring resource, 155
addFile(), 53, 134
– in TaskCB, 52
addPort(), 52
addThread(), 52
– in Event, 17
– in TaskCB, 70
append()
– in GenericList, 14
appendMessage(), 146, 148, 150
appendToCurrent()
– in GenericList, 14
atError(), 32
atWarning(), 32
average normalized service time, 30
average service time, 30
average turnaround time, 30

backwardIterator()
– in GenericList, 15
Banker’s algorithm, 154
blockCount, 129

cancelPendingIO(), 70
circular wait, 153
CLASSPATH environment variable, 21
clock policy, 79
close(), 50, 141
closePending, 131, 136
closing a file, 122
command line options
– in OSP 2 , 23
condition check, 31
contains()
– in Event, 17
– in GenericList, 15
context switching, 65
CPU scheduling algorithm, 60
create()
– in Daemon, 18, 99
– in FileSys, 50, 141
– in ThreadCB, 50, 72
creation
– of threads, 62
current task, 46
current thread, 46

Daemon, 18, 83
deadlock, 153
deadlock avoidance, 153, 154
deadlock detection, 153, 154

168 Index

deadlock prevention, 154
Deadlocked
– as status of RRB, 158
deallocateMemory()
– in PageTable, 50
debugging, 31
decrementIORBCount(), 134
decrementLinkCount(), 129
decrementLockCount(), 86, 88
decrementOpenCount(), 129, 135
delete()
– in FileSys, 50, 141
deleting a file, 122
Demo.jar, 19
Denied
– as status of RRB, 158
destroy(), 50
destruction
– of threads, 62
device queue, 103
directory, 122
directory entry, 122, 129
DirEntry, 129
DirSeparator, 119, 121
dirty bit, 81
dirty frame, 81
Disk1, 12
Disk2, 12
Disk3, 12
Disk4, 12
DiskInterrupt, 12
dispatch(), 72, 99
dispatching, 65
– of threads, 62, 63
do , 26
do acquire(), 161
do addFile
– in TaskCB, 46
do addPort
– in TaskCB, 46
do addThread()
– in TaskCB, 46
do create()
– in PortCB, 146
– in TaskCB, 46
– in ThreadCB, 67
do deadlockDetection(), 162
do destroy(), 147
do dispatch(), 69
do getPortCount(), 46
do getThreadCount(), 46
do giveupResources(), 163, 166
do grant(), 158

do handleInterrupt()
– in DiskInterruptHandler, 114
– in TimerInterruptHandler, 72
do kill()
– in TaskCB, 46
– in ThreadCB, 67
do receive(), 148
do release(), 162
do removeFile
– in TaskCB, 46
do removePort
– in TaskCB, 46
do removeThread()
– in TaskCB, 46
do resume(), 68
do send(), 147
do suspend(), 68

environment variable
– CLASSPATH, 21
– PATH, 20
error, 31
error handling, 31
event, 16, 66
Event class, 16
event engine, 7
event ID, 16

FAILURE, 12
file allocation table, 128
file name, 122
FileEntry, 129
FileRead, 12
FileWrite, 12
forwardIterator()
– in GenericList, 15
frame
– dirty, 81
– free, 97
– modified, 81
– referenced, 81
– reserved, 82
frame table, 81

GenericQueueInterface, 16
get()
– in Device, 69, 114, 127
– in HClock, 9, 50, 71
– in HTimer, 9, 71, 72
getAllocated(), 159, 164
getAvailable(), 159, 164
getBlockCount(), 128, 129
getBlockNumber(), 108
getBytesPerSector(), 9, 113

Index 169

getCreationTime()
– in TaskCB, 52, 53
– in ThreadCB, 71
getCurrentThread(), 53, 70
– in TaskCB, 52
getCylinder()
– in IORB, 108
getDeadlockMethod(), 161, 164
getDevice()
– in IORB, 69
getDeviceID(), 126, 128, 129
– in IORB, 69, 89, 108
getEvent()
– in InterruptVector, 11
getFrame()
– in class MMU, 94
getFrameTableSize(), 94
getHead()
– in Event, 17
– in GenericList, 15
getHeadPosition(), 9, 113
getID()
– in Device, 114
– in IORB, 108
– in PageTableEntry, 101
– in RRB, 159
– in TaskCB, 52, 53
– in ThreadCB, 71
getId()
– in ResourceCB, 163
– in class Message, 145
getINode(), 134
– in DirectoryEntry, 130
getINodeOf()
– in DirectoryEntry, 130
getInterruptType(), 10
getIORBCount(), 134
getIOType(), 89, 108
getLength()
– in class Message, 145
getLinkCount(), 129
getLockCount(), 85, 88
getMaxClaim(), 164
getMountPoint(), 125, 126, 128
getNumberOfBlocks(), 128
getOpenCount(), 129, 135
getOpenFile(), 108
getPage()
– in InterruptVector, 10
– in IORB, 108
getPageAddressBits(), 100
getPageTable(), 52, 53, 70
getPathname()

– in DirectoryEntry, 130
getPlatters(), 9, 113
getPortCount(), 52
getPortID()
– in PortCB class, 150
getPriority()
– in TaskCB, 70
– in ThreadCB, 71, 73
getPTBR(), 65, 70, 100
getQuantity()
– in RRB, 159
getReferenceType()
– in InterruptVector, 11
getReserved(), 101
getResource()
– in RRB, 159
getResourceCB(), 156, 164
getRevsPerTick(), 9, 113
getSectorsPerTrack(), 9, 113
getSeekTimePerCylinder(), 113
getSeekTimePerTrack(), 9
getSize(), 156
getStatus()
– in PortCB, 150
– in RRB, 159
– in TaskCB, 52, 53, 71, 89
– in ThreadCB, 71, 73, 89
getSwapFile(), 52, 53, 98
getTableSize(), 114, 125, 128
– in Device, 69, 127
getTail()
– in GenericList, 15
getTask(), 134
– in PageTable, 70, 102
– in PageTableEntry, 101
– in PortCB, 150
– in ThreadCB, 71, 73
getThread()
– in InterruptVector, 10
– in IORB, 89, 108
– in RRB, 159
getThreadCount(), 52, 70
getThreadList()
– in Event, 17
getTimeOnCPU()
– in ThreadCB, 71, 73
getTotal()
– in ResourceCB, 163
getTracksPerPlatter(), 9, 113
getType()
– in DirectoryEntry, 130
getValidatingThread(), 89, 94, 99, 101
getVirtualAddressBits(), 100

170 Index

– in MMU, 50
giveupResources(), 71
GNU make, 21
Granted
– as status of RRB, 158

handlePageFault, 99
hard link, 120
hard link count, 122
hardLinkCount, 129
hold and wait, 153

I/O request block, 16
IFL, 7, 26
incrementIORBCount(), 134
incrementLinkCount(), 129
incrementLockCount(), 85, 88
incrementOpenCount(), 129, 135
init
– in TaskCB, 46
init()
– in ThreadCB, 66
inode, 122
insert()
– in GenericList, 14
interface layer, 7, 26
interrupt, 8
interrupt vector, 10
InterruptVector, 10
io-overview, 103
IORB, 16, 80, 106
– enqueueing of, 81
IORB() constructor, 135
iorbQueue, 113
isBusy(), 114
isDirty(), 98, 101
isEmpty()
– in PortCB, 146, 150
– in GenericList, 14
isMountPoint(), 134
isReferenced(), 98, 101
isReserved(), 89, 98
isValid(), 89, 100

kill()
– in TaskCB, 70
– in ThreadCB, 50, 73

length()
– in GenericList, 14
link count, 120
links, 120
locking

– of a page, 80
logical device, 78

make, 21
Makefile, 19
master file table, 128
MaxPortsPerTask, 50, 147
MaxThreadsPerTask, 50
memory management unit, 11, 75
MemoryLock, 12, 92, 94, 95
MemoryRead, 12, 92, 94, 95
MemoryWrite, 12, 92, 94, 95
message, 144
message buffer
– of a port, 144
Misc directory, 19
MMU, 11, 75
Mount table, 123
mount table, 120
mountable file systems, 120
mountpoint, 123
mutual exclusion, 153

no preemption, 153
normalized pathname, 136
notifyThreads(), 17, 99, 134, 165

obfuscation, 28
open count, 122
open file handle, 122
open files table, 49
open(), 50, 141
openCount, 129
opening a file, 122
OSP.jar, 19
ospDeviceQueue(), 114

page replacement, 79
page table, 75
– inverted, 86
page table base register, 65, 75
PageFault, 12
pagefault, 77
pagefault handler, 77
params.osp, 19
PATH environment variable, 20
pathname, 119, 121
pathname dereferencing, 119
plain file, 122
port, 143
– as an event, 144
PortBufferLength, 144
PortDestroyed, 11
PortLive, 11

Index 171

preempting, 65
prepaging, 82
prependAtCurrent()
– in GenericList, 14
printableDevice(), 12
printableInterrupt(), 12
printableRequest(), 12
printableRetCode(), 12
printableStatus(), 11
proactive page cleaning, 83
process, 45
PTBR, 65, 75

read(), 97, 98, 141
ready queue, 64
real time, 61
reference bit, 81
remove()
– in GenericList, 14
removeFile(), 53, 134
– in TaskCB, 52
removeHead()
– in GenericList, 15
removeMessage(), 146, 149, 150
removePort(), 52
removeTail()
– in GenericList, 15
removeThread(), 52
– in Event, 17
– in TaskCB, 70
reserved bit, 82
resource, 155
resource control block, 155
resource instance, 155
resource request block, 155, 157
resource table, 155
resource type, 155
ResourceCB(), 160
resume(), 73
resumption
– of threads, 62
RRB, 157
RRB status
– Deadlocked, 158
– Denied, 158
– Granted, 158
– Suspended, 158

scheduling
– of threads, 63
set()
– in HTimer, 9, 72
setAllocated(), 159, 164
setBlockCount(), 128, 129

setBusy(), 114
setCreationTime()
– in TaskCB, 52, 53
– in ThreadCB, 71, 73
setCurrentThread(), 65, 70
– in TaskCB, 52
setCylinder(), 108
setDirty(), 101
setEvent()
– in InterruptVector, 11
setFrame(), 101
– in class MMU, 94
setINode(), 134
setInterruptType(), 10
setPage()
– in InterruptVector, 10
setPageTable(), 52, 53
setPriority()
– in TaskCB, 52, 70
– in ThreadCB, 71, 73
setPTBR(), 65, 70, 100
setReferenced(), 101
setReferenceType()
– in InterruptVector, 10
setReserved(), 101
setStatus()
– in PortCB, 150
– in RRB, 159
– in TaskCB, 52, 53
– in ThreadCB, 71, 73
setSwapFile(), 52, 53
setTask(), 73
– in PortCB, 150
– in ThreadCB, 71
setThread()
– in InterruptVector, 10
setUnreserved(), 101
setValid(), 100
setValidatingThread(), 94, 99, 101
showDirectory(), 140
snapshot, 30, 31, 33
stack trace, 33
startIO(), 114
starvation, 60
student project, 6
SUCCESS, 12
suspend(), 72, 134
Suspended
– as status of RRB, 158
suspension
– of threads, 62
swap device, 78
swap file, 78

172 Index

swap-in, 78, 97
swap-out, 81, 97
SwapDeviceID, 12, 78
SwapDeviceMountPoint, 50
symbolic link, 120
system log, 13, 30, 31
SystemEvent class, 78, 96, 99
SystemEvent() constructor, 78, 96, 99,

135

task, 45
TaskCB() constructor, 46
TaskLive, 11, 47, 53
TaskTerm, 11, 48, 53
thread, 45
thread control block, 61
ThreadCB() constructor, 67
ThreadKill, 11, 63
ThreadReady, 11, 63
ThreadRunning, 11, 63

ThreadWaiting, 11, 64
time quantum, 60
time slice, 60
TimerInterrupt, 12

unlocking
– of a page, 80
use bits, 79
userOption, 13

validity bit, 77
victim page, 79

waiting queue
– of event, 16
warning, 31
wgui.rdl, 19
wrapper, 26
write(), 97, 99, 141

	manual.pdf
	Contents

